DOCUMENT RESOME

AUTHOR	Oldehoeft, Arthur E. TITLE
	Computer-Assisted Instruction in Teaching Numerical
Methods. Final Report. (A Computer System to Teach	

ABSTRACT

The design and development of a program of computer-assisted instruction (CAI) which assists the student in learning elementary algorithms of an undergraduate numerical methoas course is presented, along with special programing features such as partial precision arithmetic, computer-generated problems, and approximate matching of mathematical expressionsio The program, designed to operate under the Purdue Instructional and computational Learning System (PICLS) language, is described in detail: first, there is a tutorial presentation of the mathematical development surrounding an algorithm, the student then formulates the solutions to several problems to display a working knowledge of the algorithm, and, finally, the student progresses to an exploratory stage where he may formulate the solution to his own problems (all computation is assumed by the computer). An experiment to test this program is also described; results include analyses of student attitudes and perfcrmances, cost factors, and efficiency. (Author/SP)
this document has been reproduced exacily as recelved from the PERSOH OR ORGANIZATION ORIGIMATIMG IT. POIMTS OF VIEW OR OPIMIONS sJated on hot hecessarily represent official ofrice of education POSITION OR POLICY

COMPUTER-ASSISTED INSTRUCTION
IN
TEACHING NUMERICAL MEHHODS

PURDUE UNIVERSIEY

COMPUTER SCIENCES DEPARTMENT

DIVISION OF MATHEMATICLL SCLENCES

FINAL REPPORT
U.S. department of heath, educailon \& welfare office of educailon
phils document has beew reproouced exactily as rectived from the peason or orgaillailon drigiating in. polwis of view or oplimous Staved do mot mectsarliy represen? official office of educanon POSIHION OR POLICY.

COMPUIEER-ASSISTEED INSTIRUETIONS
 IN
 TEACHING NUMERICAI METHODS

March 1970

U. S. DEPARTMLANT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
Bureau of Research

Finel Report

Project No. 8-E-010
Grant Mo. OEGG-0-8-080010-3532

COMPUTER-ASSISTHE INSTRUCTION II TEACHING NUMERICAL METHODS
(A COMPUIER SYSTEM TO TEACH CCMUSATIONAL MATHEMATICS)

Arthur E. Oldehoeft
Purdue University
Lafayette, Indiana
March 1970

The reasarci reported herein was performed pursuant to a grant with the orfice of Education, U.S. Departmert of Health, Education, and We?.fare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their profesaional judgment in the conduct of the project. Points of visw or opinions stated do mot, therefore, necessarily represent official Office of Education position or policy.
U. S. DEPARINLATT OF

HMALMK, EDUCATION, AKID WLLFARE
Office of Education
Bureau of Research

ACKOWLADGEMAIIS

I would like to thank Professor S. D. Conte for his guidance and encouragement in this research, Profesacr R. R. Korfnage ior his interent and superviaion in developiag PICLS, and Professor F. J. Frederick for his helpful suggestions in the preparation of this dissertation.

I am also indebted to Mr. John Steele for providing access to computing facilities in order to obtain axperimental results. Special thanks are due Mr. Kenneth Adous who was instrumental in instailing permanent file residence features for PICLS and in reviaing PICLS to maintain operational compatibility with progreasive versions of the MACE operating system.

My wife, Margie, also provided invaluable belp and oncouragement throughout this entire investisation.

partes of conturiss

Pere
LIST OF TABLES v
LIST OF FIGURES vii
abstract viii
IMFRCDUCNICRI 1
Current State of the Art 1
Description of the Research and Development 7
An Overview of the Hardware and Software 11
 13
Description of the Probien 13
Proliminary Deaign Conolderations 15
Description of the Method and Its Limitations 16
The Subroutine masisu 24
Mathematical Jumetrication of the Method 30
Concluding Remarks 32
desice and devilornant of the cai course 35
Gonoral Philosophy and Denign Considerations 35
structure of the Tutorial Mode 40
Struature of the Problem Mode 46
Structure of the Investigation Made 51
Spectel Program Fentures 52
Coneluding Remarks 57
EXPMRDIMNIAL RESULITS AND GMMIRAL CONCLUSIOMS 63
The Purpose and Genaral Hiatory of the Experiment $\$ 3$
Characteristics of the CAT end Conventional Grouge 66 66
An Amalysis of Student Performance 69
Observations of the Proctor 77
Reaulte of the questionnaire 79
The Econcmice of CAI 82
 89
LIST OF RMTRRIMCES 95

Pere

APPIDICIS

Aypendise A: Student Manual for a Computer-Aesietod Course in Computitionsil Mathematics 98
Appemaix B: Lescon Plans 160
Appanalix C: Queationneire and Freininations 217
Appendix D: Saxpls Itudent Outyat 234
VIMA 272
tisis of tabress
Tble Pro

1. Available Operatore and Froctions 16
2. Computatsonal Probmbility of Fasinre for mandom Pointa 19
3. Points Outlining Failure Region 20
4. Predicted and Ingarimentel Probabilities of Failure 20
5. Feperimental Probewility of Failure for Ton Idontities 21
6. STables for mamples 5-8 24
7. - Trables for Exaxplea 9-13 30
8. Mathmatics Backrcround for Varioue Groups 67
9. Rankings by Math Bementer Hours (mh) 68
10. Raricings by Math Gradepoint (ex) 68
11. Eramination Scores for Various Groups 70
12. Predicted and Actuai Performance of the CAI Stulenter 71
13. Eramination Iteme with Large Group Dirferences 72
14. Comparison of CAI-1 with Approzimate Reprecentatives in C 75
15. Comparison of CAI-2 with Approximste Representatives in C 75
16. Performance at the Graduate Level 76
17. Distribution of Responses on the Quentionnaire 81
18. Average Student and Computer Time Requirmants 85
19. Computiag Costs for car 86
20. Individual Reaponses to questionnaire Items 225
21. Raxikings by Rxan 1 Scores 232
Table Page
22. Rankings by Bxar 2 Scores 232
23. Rankings by Exam 3 Scores 232
24. Rankinge by Average 8cores over Three brame 233

LIET OF FIGURES

Ficure Pere

1. Instrontional Strategy for Multiple Choice Itemin 43
2. Inatructional Strategy for Constructed Nathomatical Responset 44
3. Problem Mode Strategy for Constructed Reaponser 48

Oldehoeft, Arthur Earl. Ph.D., Purdue Uni yersity, June, 1970. A Computer System to Teach Computational Mathematics. Major Professor: S. D. Conte.

The program is designed to operate under PICLS on a CDC 6500 computer and assists the student in learning elementary algorithms of an undergraduate numericai methods course. The program begins with a tutorial presentation of the matiomatical development gurrounding an algoritim and a description of the mechanics of the algorithm. The student participates throughout this phase and is required to work numerous exercises. The program then requires the student to formulate the som lution to several problems in order to display a working knowledge of the algorithm. Finally, the student progresses to an exploratory atage where he may formulate the solution to his own problems. All computation is assumed by the computer and the student is frae from conventional programing and debugging.

The design and construction of this program is presented along with apecial programing features auch as partial precision arithmetic, computer-generated problems, and approximate matching of mathematical expresaions.

The first experimest is described in detail. Student attitudes and performances, cost factors, and efficiency are analyzed.

CHAPYERR I

TMYRODUCHION

Currerit State of the Art

The possibilities of using a computer to aid in the inatructional. process have attracter resemchers from a variety of backgrounds. The magnitude of interest in computex-assisted instruction (CAI) is domonatrated by the large volue of literature available for pablic dietribution. For recent detailed reviews of the work in CAI, the reader is directed to two recent articles by Feldhusen and seabo [13,14] and publications by the Entelek Corporation $[20,20$].

The basic problems which are encountered in CAI are generally attributed to the inability to totally define and control the human learning process and the limited ability to communicate with a computer in a natural language so as to make the compuier behave as a human tutor. Kindred [22] classifies the research areas as pedogogical-paychological. and technical-practical according to the types of problems encountered.

In the firsit category, the concern is with the theory of learning and attempts are being made to define and control those variables which would play an active role in a tepching model. The ultinate objective would be to construct a teaching model to adapt to individual differences and lead a given student to a maximum level of performance in the least poisible amount of time. Stolurow and Davis [35] drseribe a somewhat more practical model. Given the atudme variables along with a
minimm acceptable level of performance and amaximum allowabie inatruction time, the machine would select from a set of taching strategies that strategy which is most likely to satiseng the constrasats of the problera. It is essumed that the machine has a large number of teaching programs at its disposal. Teaching strategies would dynamically change on the basis of the student's perforimance and personal traits. The success in constructing such a model depends heavily on tha ability to define and evaluate the effects of factors such as atudent variables and their relevance to learning, branching atrategies, methods of foedback, and modes of instruction.

Several points are often cited in fayor of CAI: self-pacing, cheat proof, imediate feadback and reinforcement, simultaneous teaching, teating, and remedials functions, access to a history of student performances, and the freeing of the instructor's time for counaeling. Meny of these advantages have not been convincingiy demonstrated.

If aelf-pacing means that a student progreases othrough a fixed instructional sequence at a rate which is determined by his own abilities and understanding, then the student cannot be delayed by foulty hardware or moftware, inefficient keyboards, and slow typing mechanisms. Experiments at Penn State [29] point out that CAI is not selr-paced in this respect. If self-paced also implies that the student is not exposed to materials already learned, then the stivdent cannot be confined to a flxed instructional program.

To date, very little is known about, how one would effectively combine the teaching, testing, and ramedial functions. Eariy atterpte are reported by Suppes [36] on the conatruction of multitrack prograng for
elomentary arithmetic. The nature of the subject mattos is drill and practice. The level of difficulty and the amount of drill is deterinined by a percontage of right and wrong answers.

Although computers can provide complete history of a atudentis performance along with prescribed surmaries and statistics, it is not clear how researchers, instructors, and administzators can wake good use of the information. Also, it remains to be determined how traditionaily \&rained teachers will effectively use their time for other functione such as counseling students. These difflculties are notod by Fein [11].

The cised advantages of CAI are embodied in the concept of individualization. Oettinger and Marks [30] point out that a dofinition of individualization is not generally agreed upon. Related to the learner and taken literally, a computer syatem wowld have to tailor itself to all charactertatice of an individual which affect the learning process. However, researchers with experience in this field generally agree that CAI bus the posential for a high degree of realization of the cited advantages.

In the techaical-practical area, emphasis is placed on the development and evaluation of hardware, CAI programming systems, and actual CAI course material, and on attempts to specify a systematic set of rules for designing instructional material. The theory which supports the existence of this area is that some advantages of CAI over traditional inatruction can be demonstrated through a sensible approach.

In the area of CAI software, a number of languages have evolved. Languages which are used for inatructional applications have been reviewed by Frye [16] and Intalifi [20]. Some of the laguagea which have
been designed primarily for creating course material are PLANIT [12], MANTOR [15], PILOT [38], ELIZA [37], Coursewriter [21] (various versions), PICL'S [24], TUTOR [1], and ISL-1 [33].

CAI languages are designed with the intention of providing the course author with a nontechnical method for creating and implementing instructional materials. Bmbedded in these languages are techniques for processing student responses. Keyword matching and charccter editing are standard routines and the PLANIT language also has a phonetic analyzer. Although these features are useful and represent on approach to the problem of free communication, their use is left to the ingenuity of the course author. We are still a long way from automaticaily processing complex natural language responses.

The design and implementation of course material remains a monumental task. A survey by Balough [2] cites a wide range of estimates, varying from eleven to two hundred instructor hours, needed to prepare one hour of student instruction. Charpe and Wye [7] report that more than two hundred total man hours are needed to provide for one hour of student instruction.

Investigators such as Bunderson [4], Childs [8], and Mager [26] have studied the problem of systematically designing course material. They generally agree that certain basic steps are necessary to produce effective results.

1. Specify the terminal objectives of each lesson in terms of
a. the kind of behavior which will be accepted as evidence that the student has learned,
b. the conditions under which the deaired behavior is expected to occur, and
c. how well the student muat perform in order to have his behavior considered acceptabie.
2. Pexform a task analysis by
a. ealecting the sequence of learning experiences that are likely to attain the chosen objectives,
b. specifying all possible outcomes, and
c. selecting the learning experiences to remedy erroneous outcomes.
3. Progran the course materials.
4. Test and revise the materisis on the basis of actual performance.

Of the above steps, the task analysis is considered to be the most illdefined. A selection of leaming experiences is bassd largely on the judgment of the course autior. If constructed reoponses are required, it is difficult and perhops impossible to apecify all possible outcomes even on a single item and ravide the appropriate remedial instaruction. If two students arrive at the same exroneous answer, they may have dont so for reasons unrelated to each other. Without a study of the histories of many students, it is difficult to apecify even the probable errors.

In the aree of acturl develcpment and implementation of college level course materials, very few complete CAI courses actually exist. Several of the major contributors have been the University of Illinois [25*: Florida State University [19], the University of Texan [5], and Pennsylvar". a State University [29]. Based on reporte Prom these institutions, some agreements and discords can be noted.

1. A systmatic approach to the devalopment of inetructional material is necessary.
2. Achievement and retention carparis sums betweer CAI and wadibe tional instruction have net yioldod conclueive resuits and, on a course by course ansigris, there is some disagrecment.
3. Comparisons in instruction time have yielded contradictory results. Mimen are dependent on the nature of the course and the terminal hardvare.
4. The majority of CAI students express a favorable attitude toward this method of presentation.

There is also gemeral agrawent that CAI cannot be juatiryed on the basis of cost at this point in time $[2,23]$. Some inconsistoncies or lack of conclusions might be attributed to environmental variations, variations in the types of CAI experiments, and goor measuring devices. Fxperiments have been performed with various types of harwsare, author Languages, and teaching strategies. Variations are reported in the method of selecting samples, the size of the samples, and the duration of the experiment. Although experiments have invoived a variaty of materials, it is generally agreed that the areas which are mont natural for CAI are drili and practice, simulation, and problem-solving. In these areas, the computational or ropetitive power of the computer is more easily applied.

In view of the general difficulties which oxist, many researchers Do not consider CAI as the panacea, but rather a component which might play an effecive role within a system of educational technology. A broader view appears to call for a total reorganization of the structure of educational institutions, a structsare in which the computer is one resource to be used where it is most efficient in the instructional
process. The social, political, and economic atitcultias involved with moving toward an educational technology are cited by Oettiager and Marks [30]. They conclude that the goals and techniques of education are not yet well enough defined for the realization of a tecbnolagy. Wilapm [39] is concorned with similar problems, but does foresee possible use of a computer in instruction, eapecially in the areas of mathematics and langrages.

Description of the Research and Develonemer

This investigation is concerned with the Seasibility of uoins a computer to aid in the teuching of on undergraduate numerical mothods course. In an introductory numerical methods course, or what will be referred to hereafter as computational mathematics, the typical student is a college junior who has just completed the basic sequence in calculus, differential equations, and an introductory course in matrik algebra. He is expected to know a programing language well enough to program computational procedures for a computer. Since the algoritinms to be taugit are designed and analyzed for computer use, it seems feasible at the outset that the computer itself might aid in the instructional procens.

By traditional instruction, the undergraduate student in computational mathematics is faced with several problems.

1. The cumbersome arithmetic associated with a numerical mothod can discourage the student from working anything more than the simplest type of examples. An intuitive feeling for how an algonithm behaves in practice and a knowledge of its deficioncies often requires working a variety of problems. This
requises botili time ance effort on the pert of the sturient to either write and debug his own programe or obtain mivilable routines from an entablished library. Duc to limited computer resources and comitments to other courses, it is unilkely that the student can explore more than a handful of methods on the computer.
2. With the traditional mode of clasaroom instruction, it is difficult to expose the gtudent to the varietsy of exaxales and. applications needed to demonatrate the deficiencies or power of a method. This is due, in part, to the amount of material which must be presented and elso to the avmbersome arithmetic. The ingtructor usuaily limits his discusaion to the basic theory whici establishes the existence of a method, an explanation of the mechanics of the algoritho, and an example or two which can be demonatrated on the blackboard. The araniples may not be carried to completion. Teribeoks, which present tabulated computer reaults for particular examples holp to remedy the situation, but the student does not normally work through these examples. From this framework of examples, or faith in the instructor, the beginning student is expected to gain an intuitive feeling for a numerical method.
3. Beginning courses usually require a mathematical exposure to elementary calculus. Unless the underlying theorems are olementary in nature, they are at most stated in pasaing. As a result, a great deal of emphasis is placed on a description of the mechanics of an algorithan. With the traditionel mode of instruction, the student does not participate in the developmant
of the mechanics and may not have the time or computex resources to practice the application of all algorithme.

The problems stated above can be more or lean atimibuted to the nature of a computational machematics course. In addition, the student faces problen which are common to all courses.
4. Individusl attention is givers in the clessquom to only those students who interyect camments or adk questions. Vorbal communication is normally attempted by only a mall percentage of the class.
5. The lecture is prepaxed for the level of the average student. The better students are wmotivated and the woaker atudents are slow in grasping the material.
6. Due to administrative denands or research interestis, the inm structor cannot devote sufficient time to counseling atudents.

The work reported in this paper does not prescribe a cure for these difficulties since it is not known how to program an ideal teacher. However, the possibility of reducing the severity of some of the problems can be explored by constructing, implementing, and testing a computerbased instructional system for computationel mathematics. The primary objectives of this investigation are concerned with feasibility and are stated as follows:

1. design and implement a CAI program to teach computational mathematics and investigate the technical difficurties associated with constructing and using such a syotem;
2. inglement techniques which miciat be useful in an annel on problems 2-3 atated above; and
3. experiment with the system in an sttempt to detormine stuaicnt acceptanse and cospare this method with the convertional method of instruction.

To accomplish these objectives, twonty-five lessons were designed for computer presentation, Tre first teaches the use of the system while the ramining twenty-four cover a variety of numerical methods which the student would study in conjunction with outside reading assisnments froms Conte [9], the textbook currentiy used at Purdue. In a alirect atteck on problems 1-3 stated above, each lesson consists of a tutorial mode, a problem mode, and an investigation mode. In an attempt to free fine student for concentration on the develoraent and mplication of aigorithus, the burden of cumbersome aritmetic is assumed by the computer and detailed progremning is not required. Problems $4-6$ are appronched in a manner similar to that in other CAI cowrses described in the literatura. \because An overall description of the design, inglementation, and associated difficulties is presented in Chapter III. Chapter II is devoted to a description of special features needed to handle mathematical exprensions entered by the student from the CAI terminal. The results of an initial experiment comducted during the Fall Semester of 1969 are reported in Chepter IV in the form of some numerical measurements and peraonal observations.

The end product of this development has several uses. First of all, it can serve as a research vehicle for future tests of the effectiveness of CAI. As experience is geined, the system should grow in size and sophistication to incorporate mulilievel sequences of instructional material for the purpose of accelerating or decelerating students. Seeondly, the syatem may sorve as a celf-inatructional course for mtudents
wishing to study (mputational mathematics. Finally, in conjunction with tradibional lectures, a student may use the takorial moden dos review ax remedial work or elect to work greded problems or problems of his own choice.

An Overview of the Hardware and Softhare

The computational mathematics course was written in the language of PICLS [24], the instructional system available for the CDC 6500. PICLS is designed to operate in an interactive mode under the MACE Operating System [32] for the CDC 6500 at Purdue University.

The MACE Operating System with interactswe Pacilities was developed by Purdue Computing Center personnel. A typical request for service from a CAI teminal is assigned a high priordity by MACE causing lower priority jobs to be rolled out of core long enough for PICLS to service the reauest. PICLS is then autoratically rolled out in order to free core for other jobs. Thus, the response time at cail terminal is highly dependent on the status of MACE and the current job mix.

In aupport of the CAI project in computational mathematics, a set of arithmetic routines was installed in PICLS during the summer of 1968. These routines enable a course author to accept student initiated expressions which could be compiled and evaluated or saved for later eveluation. Special routines were also added to test the equivalense of two mathematical expressions. Due to these special arithmetic requirements, the current version of PICLS is the only version under which the course in computational mathematics is guaranteed to be operational. Subsequent versions of PICLS may not contain those apecial faatures mentioned above or described elsewhere in this report.

The twenty-five leasons in computational mathematics consista of apprecifinately 27,000 PICLS inetructions. Throughout the devel.opment, a lincar mathematicai notation wers mployad for sustable use on a KSR-33 Teletype texminel. At instruction time, the course material and PICLS resides on approximately 200 tracks of Control Data 808 disk storage in the form of permanent files. Thus, a student at a CAI torsual may in itiate any section of any Iesson at any time. The actual hardwre requirements for the lesson material are the same as the requirements of PICLS. For the most part, PICLS is written in Fortran but some of the file handing routines as: written in amohine language. In addition, postions of the dastrucifional material depend on the sixty bit binary word of the CDC 6500 and are not directly transferabie io other machines without reviaion.

CHAPIER II

an analysis of constructicd mathmutical responges

Description of the Problem

An area of major concern in instructional systems is the design of techniques for processing student responses. While it is deairabie to provide the student with complete freedom in responding to questions, techniques are not available for grading free form answers. Phonetic encoders and keyword matching routines are attempts te provide more flexibility in processing constructed answers. In one sense, mathematical responses present a very serious problem since an expression can usually be correctly represented in an infinite number of ways. On the other hand, it is the very concept of equivalence over the real or complex numbers which provides for the development of powerful teciniques. The problem of decidiry when two expressions are equivalent has been encountered in other applications. Both algebraic and numeric approaches to this problem have been reported.

In a direct algebrais spproach using normal and canonical forms, Caviness [6] considers the expressions generated by the rationals and the complex number 1 , the variables x_{1}, \ldots, x_{n}, the operators $+, \ldots, *$, unnested composition, and functions exp, sin, cos, tan. An expression in this class can be reduced to normal form P / Q where P and Q are canonical. This yields a technique for deciding equivalence. Caviness also cites acme negativo resulte by D. Richardson. Richardson conaiders the

Clas of expresions generated by the rationala, Π, in 2 , the variable x, the operators + , *, nented componition, and the functions exp, ain. abs. For this class, the prodicate "cyo" is recursively undecidable. Thus, we bave an indication of lower and upper bounde on what can be expected from exact techniques.

In a combined algebraic and numaric approach, Kartin [28] uses a hash colle assignment scheme to map the set of infinite expressions into a finite number fleld. For addition and multiplication, range probleme acsociated with floating point arithmetic can be avolaed by porformims the arithmetic in a finite fiald. However, exponentiation does not preserve equivalence.

The PLANIT system [12] uses a atraight numeric appromeh by asaigiIng prime integers, starting with 3, to each diatinct variable and comparing the reaulting values of the expreasions. By this technique, $f(x)=x$ and $F(x)=6-x$ would be considered equivalent. This is a simple example of the danger encountered in using numbers.

The method instalied in a special version of PICLS for the computational mathematics course consists of a combination of randen evaluation and operator analysis. Although random evaluation was considered unatable by Martin for his applieabion, there is some promise in CAI since the correct expressions are known when the material is develcped. Also, studonts are likely to construci enswers within the context of the discussion. The purpose of this chapter is to describe this method and analyue its deficiencies. Nuch of the information atuted hore has been previcusly reported by this author elsembere [31].

Prelimimaty Deaim Conalderetione

In designing a method which seemed auitable for converational use In CAI, several factors wose considered. Firato a rintchiag agorithm should have low central processing time requirements in orior to avoid any significant increase in the already present syatem overhead time. Secondly, the probability of failure should be remote. If it should happen that the method fails, then it should normaliy be possible for the student to enter the same answer with a low probability that the method will fail again. This implies that the variables involved in both the correct answer and the student's answer be treated in some independent sense from one application of the matching process to the next. Finally, the methoa should be sophisticated enough to be "student proof" if at all possible. From an external point of view, it should be difficult for a student to determine the method of testing equivalence in order to avoid deliberate attempts to fool the algorithm.

The rules adopted for constructing mathematical expressions are similar to those used in Fortran. The student, however, is restricted to the use of variables which have meaning within the context of the discussicn and have been defined by the author. Brackets [and] are used to delimit subscript expressions and the operators and functions munt be chosen from the two classes or Th given in Table 1. The choice of notation was based on the student's assumed knowledge of Fortran, the linear notation imposed by the teletype terminal, and the content of the actual course materisi in computational mathematics.

Table 1. Available Operators and Sunctions
$T_{1}:+, \therefore *, /$, compasition, + (ce **) to an integer power, ain, cos, tan, esc, sec, cot, exp, r^{X} where $\mathrm{r}>0$, sinh, cosk, tank, cseh, sech, coth
©: arcsin, arccoa, arctan, $1 \mathrm{n}, \log$ (base 10), gQrt, \uparrow (or **)
variable base to a variable or fractionel povar, abs
In order to allow the student maximum flexibility in constructing responses, it is assumed that course author will defire and maintain the status of variables intemaily as they are introduced to the student on the teletype page at instruction time. For example, if the variable x is introduced during the course of discussion, then the course author also defines the variable x internally and treats it as an indeterminate over the real field by assigaing a random value to it. If x assumes a particular value, the course author must assign the same value to x internaily and compute all rariabiles depending on x. In this way, the student may construct responses using any variable which is meaningtul within the context of the current snstructional mataxial. Examplas of how the course author provides this flexibility appear in Chapter III.

Description of the Method and Its Limstations

Any expression which is constructed from defined variables, constants, and the T_{1}-operators listed in Table 1 will be called a T_{1}. expression. If an expression contains a Φ-operstor, it is not a T_{1} expression. For example, $\sin (x+\cos (y))$ is a T_{1}-expression from R^{2} to \mathbf{R}^{1}. $\operatorname{Arcain}(\operatorname{abs}(x) /(1+x * * 2))$ is not a T_{1}-expresaion.

Throughout this discussion, the correct expresaion specified by the
course author will te denoted by I waile F will demote the stufent: $\%$ reaponse. Swail letters x, y, x_{1}, x_{2}, etc. will denote reais variables while capital letters $X, Y_{9} X_{1}, X_{2}$, etc. will denote randomiry selected values which have been assigned to the variables. \mathbb{R}^{n} will denote no dimencional real space. Considering f and F as functions from \mathbb{R}^{n} to $\mathbb{R}^{\mathcal{I}}$, points X_{1} in $R^{n}, i=1, \ldots, m$, are randomiy chosen and the vaiues $f\left(X_{i}\right)$ are compared with $\mathrm{P}\left(X_{i}\right)$ 。If, for all i, the values are equal, the conclusion is fate Otherwise fifi. If beth f and F are T_{1}-expressions, the selecm tion of only one $X \in \mathbb{R}^{n}$ is justified in a succeeding section. There is a 0 -probebility of selecting X where f and F are not defined. If far, there is \& 0 -probability of selecting X where $f(X)=F(X)$. If Φ-operators are present in either expression, the 0 -probability condition may not hold. The effect of Φ-operators will be discussed later.

Since evaluation is performed on a computer, we can only hope to approximate the 0 -probebility condition. The method will suffer from the coumon defects of (1) round-off error, (2) loss of significance, and (3) a possible positive probability simply due to a finite set of computer numbers. As a result, it is possible that two nonequitimient expressions will be judged equivalent or equivalent expressions will be judged nonequivalent. The numerical approach is to approximate equivalence by concluding that $\mathbb{P}(X) \equiv \mathbb{P}(X)$ if any one of three conditions is satiafied for an error tolerance $8=5 \cdot 10^{-11}$.
(1) $|f(X)|<8$ and $|F(X)|<8$
(2) $|P(X)-F(X)|<8$
(3) $|(f(x)-F(x)) / P(x)|<8$

In an atterpt to avoid range probleas such as overfliow and loas of
significance, the programer should reatritet the aciection of random points to a finite interval I based on the atructure of the correct answer f. For exniple, $f(x)=\cos (x)+\sinh (x)$ is computationally equel to $\sinh (x)$ for large $|x|$ since the cos is completely dominated by mand In this case the programer would choose I to be a relatively mall interval about 0 to ratain the effects of the term con (x). whe choice of I remains somewhat ill-defined since, once I is know, one can deliberately construct expressions F which will emphasize the computational dofects.

Rather tizan a 0 -probability, we have on e-probabỉity where ϵ depends on $f, F, 8, I$, and the precision of the compuration. An a priori eatimate of ϵ is not available sinee the student's ancwor F is not knew. On this basis, several strategies are possible. One etrategy would be to conclude $f \equiv F$ if the two functions agree at all m points and conclude fap if they fail to agree at any one point. Another strategy would bo to conclude faf if they agree at any one of the m points and conclude far if they disagree at all m points. Fable 2 shows the probabilities of success and failure for these two strategies. If fir, the first strategy is a poor choice for large m since the probability of success ($1-\epsilon)^{m}$ tends to zero. It is, however, a good strategy when ffr aince the probability of failure ϵ^{m} tends to zero. On the other hand, the second
 choone nixixed strategies as alternatives.

In actual practice in instructional settings, tha case when fat seemed less susceptible to failure than the case where farf. On this basis, it would appear that the second strategy is the better one for this application. In order to further investigate the inatability, the

Table 2. Computational Probability of Failure for mandom Points

Possible Computational
when $f=F$
when far
Events

$$
\operatorname{Pr}\left\{X_{i} \in I: F\left(X_{i}\right) \notin f\left(X_{i}\right)\right\}=\epsilon
$$

$$
\operatorname{Pr}\left(X_{1} \in I: P\left(X_{1}\right)=\right.
$$

$$
\left.f\left(x_{i}^{2}\right)\right\}=\epsilon
$$

$F\left(X_{i}\right)=r\left(X_{i}\right)$ for all i=1....m
$(1-\epsilon)^{m}$
$1-(1-\epsilon)^{m}$
ϵ^{m}
$1-\epsilon^{m}$
ϵ^{m}
$1-\epsilon^{m}$
$(1-\epsilon)^{m}$
$1-(1-\epsilon)^{m}$
first atrategy was adopted in the program. In order to minimize the probability when $f=\mathbb{F}$, tha value wrl is used. In other words, the decision for equivalence of two T_{1}-expresiaions is based ons pvaluation at exactly one randomiy selected point. Fhamples 1 and 2 presented below illustrate the posaible computational difficulties when frw.

Bremple 1--Loss of Sipificance. Suppose the correct solution of $x^{2}+b x+c=0$ is specified by $f(b, c)=.5\left(-b+s q x t\left(b^{2}-4 c\right)\right)$ and the student's answer is $F(b, c)=-2 c /\left(b+s q x t\left(b^{2}-4 c\right)\right)$. In theory $f=F ;$ but using single precision on a CDC 6500 with a computational error tolerance, we have $|1-F / f|>5.10^{-11}$ in a region where $|\mathrm{c}|$ is mall compared to $|\mathrm{b}|$. The magnitude of c which outlines this region was approximated for selected values of b. These values appear in Table 3 and yield the relationship $c=+10^{-5} b_{b}^{2}$. More important than the accuracy of the approcinations is the fact that, as $|\mathrm{b}|$ increases, $|\mathrm{c}|$ increases at a faster than Iinear rate. If (b, c) is selected in the region between the curves $c+10^{-5} b^{2}$, then the incorrect decision form is made. Sampling from a square with center 0 and side length 2S, excluding the region where $b^{2}<4 c$, the probability P of an incorrect deciaion can be found by integration.

Case 1: If $0<0 \leq 4, \operatorname{Pm} 8\left(10^{-5}\right) 8 /(12+s)$
Case 2: If $4<8 \leq 10^{5}, \mathrm{P}=\left(10^{-5}\right) \mathrm{s}^{1.5} /\left(38^{\circ 5}-2\right)$
Case 3: If $5>10^{5}, \mathrm{~Pa}\left(3 \mathrm{~s}^{.5}{ }_{-2}\left(10^{2.5}\right)\right) /\left(3 e^{.5}-2\right)$
Based on the above formulas, Table 4 shows how P increases with S. For the same values of S, an experimental probability $p *$ was computed based on 10,000 random points.

Table 3. Points Outiining Failure Region
$\begin{array}{llll}|\mathrm{b}| & 10^{5} & 10^{4} & 10^{3}\end{array}$
$10^{2} \quad 10$
110^{01}
10^{-2}
10^{-3}
$\begin{array}{lllllllllll}|c| & 10^{5} & 10^{3} & 10 & 10^{-1} & 10^{-3} & 10^{-5} & 10^{-7} & 10^{-9} & 10^{-11}\end{array}$

Table 4. Predicted and Experimental Probabilities of Failures

S	1	10	10^{2}	10^{4}	10^{6}
P	$.61 \cdot 10^{-5}$	$.42 \cdot 10^{-4}$	$.36 \cdot 10^{-3}$	$.33 \cdot 10^{-1}$.79
$P *$	0	0	$.7 \cdot 10^{-3}$	$.45 \cdot 10^{-1}$.41

Example 2-Miscellaneous Expressions. The method of comparimon at randomily selected points was tried on ten trigonometric identities* used by Martin [28].
(1) $\sin (x) \tan (x)+\cos (x)=\sec (x)$
(2) $(\sin (x) \cot (x)+\cos (x)) / \cot (x)=2 \sin (x)$
(3) $\csc ^{2}(x)+\cot ^{2}(x)+1=2 / \sin ^{2}(x)$
(4) $\cos (x) \cot (x)+\sin (x)=\csc (x)$
(5) $(1-\sin (x))(\sec (x)+\tan (x))=\cos (x)$
(6) $\sin (x) /(1-\cos (x))=\tan (x) /(\sec (x)-1)$
(7) $\csc ^{4}(x)-\cot ^{4}(x)=\csc ^{2}(x)+\cot ^{2}(x)$

[^0](8) $\sin (x) /(\sec (x)+1)+\sin (x) /(\sec (x)-1) \sec 2 \cot (x)$
(9) $\cos ^{6}(x)+\sin ^{6}(x)=1-3 \sin ^{2}(x) \cos ^{2}(x)$
(10) $\operatorname{sqxt}((\sec (x)-1) /(\sec (x)+1)) \operatorname{csing}((1 \cos 0 \sin (x)) / \sin (x))$

For several arbitrary intervals, the results of evaluation at 10,000 random points are reported in Table 5. I denotes the total length of a symastric interval about 0 from which the points were selected. The error tolerance $8=5 \cdot 10^{-11}$ was used for equivalence.

Table 5. Insperimental Probability of Failure for Ten Ideritities
Length of Intervel L

Case	2	6	18	50	70	90
1	0	0	.0001	.0010	.0020	.0010
2	0	0	.0001	.0007	.0002	.0004
3	0	0	.0002	.0009	.0003	.0004
4	0	0	.0002	.0004	.0004	.008
5	0	.0020	.0055	.0098	.0112	.0143
5	.0098	.0028	.0040	.0036	.0034	.0037
7	.0314	.0115	.0289	.0556	.0752	.0775
8	.0079	.0030	.0053	.0049	.0048	.0048
9	0	0	0	0	0	
10	0	0	.0017	.0021	$.00 R 3$	$.001 \varepsilon$

Assuming no computational difficulties, one still cannot arbitrarils apply this method to any expressions. As previously mentioned, the 0probability condition may not hold in theory if one uses the opperators from Table 1. The inverse operators introduce branch lines in the complex plane and when restricted to the reals, disjoiat regions may be introduced, any or all of which may be of interest. The abs operator also serves to partition the real line into disjoint regions. The presence of - operators in an expression can be detected when evaluation takes place. Erample 3 illustrates how -or crators may introduce multiple regions. From an analysis of f, one can usuaily determine the regions of interest
in R^{n} and the ణormal approach would be to saxple in each region. The difficulty arises in trying to mechanically determine the ragions introduced by -operators in F. Erample 4 shows that a total diarerard of F may or may not yield the correct decision.

Eraple 3. Let $f(x)=\ln \left(x^{2}\right)+a b s(2-x)$. The term $\ln \left(x^{2}\right)$. introduces two regions $L_{1}=(x: x>0)$ and $L_{2}{ }^{\text {an }}(x: x<0)$. The term abs $(2-x)$ introduces regions $L_{3} x(x: x<2)$ and $L_{4} x(x: x>2\}$. L_{2} is of interent if we wish to distinguisin between identities such as $\ln \left(x^{2}\right)$ and $2 \ln (x)$ which hold only on the principal branch. The resultant regions are $D_{1}=\{x: x<0\}$, $D_{2}=\{x: 0<x<2\}$, and $D_{3}=(x: x>2)$.

Erample 4. Let $f(x)=a b s(x)$ and $F(x)$ axx. An analysis of f yields the two regions $D_{1}=(x: x>0)$ and $D_{2}=\{x: x<0\}$. Selecting an X in the latter region detects f. Reversing che roles of f and F, let $f(x)=x$ and $F(x)=a b s(x)$. Now, an analyais of f yields one region $D_{1}=\{\infty, \infty)$ since f is a. T_{1}-function. If we randomily select $X f$ rom any interval symmetsic arout 0 , there is a $\frac{1}{2}$ probability of detecting the fect that ffr.

We cennot restrict our attention only to the effects of abs aince the standard inverse operators may be used to simulate these operators on R^{n}, e.g. exp $\left(\frac{1}{2} \ln \left(x^{2}\right)\right)=a b s(x)$. The approach taken bere is to check for the resolvability of two expreseions. In particular f and F are said to be ramolvable if the occurrence of a ρ-operator (with argument h) in the expression f implies the occurrence of the same -operator (with same argument h) in the expression F and vice veisa. The arguments h are checked for equality by the usual method of random evaluation while the --operators are matched symbolically. During the process of evaluation, the operators and the numerical values of the arguments are recorded in
a -table. Examples 5-8 iniustrate this method.
Example 5-Resolvable Case where fFF. Let $f(x)=\sin (a b s(x-1)+$ $\left.\ln \left(y^{2}\right)\right)$ and $F(x) \sin (a b s(x-1)) \cos \left(\ln \left(y^{*} y\right)\right)+\cos (a b s(x-1)) \sin (\ln ((y-1)$ $(y+1)+1)$). An analysis of f yields the following regions in R^{2} : $D_{1}=\{(x, y): x<1, y<0\} ; D_{2}=\{(x, y): x<1, y>0) ; D_{3}=\{(x, y): x>1, y<0\} ;$ and $D_{4}=\{(x, y): x>1, y>0\}$. Upon evailuation at a random point 1 , ich D_{2}, the otables given in Table 6 are constructed. On each D_{i}, we find. that each entry (operator, numerical values of argummins) in the -table for F matches an entry in the Φ-table for f asd vice versa. Also $f(X, Y)=F(X, Y)$. Thus, we conclude $f=F$ on each region.

Example 6 m -Rosol vable Case where f青. Let $f(x)$ uabs (x) and $F(x)=(x+a b s(x)) / 2$. An analysis of f yielads fwo regions $D_{1}=(x: x<0)$ and $D_{2}=\{x: s 8>0)$. Upon evaluation, the entries in the o-tribles match but $f\left(X_{1}\right) \neq F\left(X_{1}\right)$ for X_{1} in D_{1}. The conclusion is f.

Example 7 -unresolvable Case where frF. Let $f(x) \operatorname{mexp}((x-1) / 2)$ and $F(x)=(\exp (x-1))+\frac{3}{2}$. Since f is a T_{1}-function, only one region $D_{1}=\{x:-\infty<x<\infty\}$ is considered. Upon evaluation at X_{1} in $D_{1}, f\left(X_{1}\right)=F\left(X_{1}\right)$. Since the Φ-tables do not match, no firm decision is made

Example 8--Ungesolvable Case where ftre. Let $f(x)=a b s(x)$ and $F(x)=a b s(x) \operatorname{abs}(x+10 * * 10) /(x+10+10)$. The regions for investigation determined by f are $D_{1}=\{x: x<0\}$ and $D_{2}=\{x: x>0\}$. Sinne the entries in the -tables do not match, f and F are not resolvable. No firm decision is made unless we are fortunate enough to choose $X_{1}<-10^{10}$ in D_{1}.

As a straight forward implementation of the method dezeribed in the previous sectlon, a dupporting set of arithmetic routines wac installed in PICLS. The subroutine MAYCH may be called from the PICLS language in order to numerically test f and F at a radomily selected point. March is called by thrse operation codes: CN-correct nueric, WIN-wrong numeric, and AN-ancicipated numeric. The programer would normally use these instructions to process a student's mathematical response. Erecutions of $C R$, WN, or AN cause a trensfer of control to MNTCH and the string of symbols following the operation code is passed as an argument to MAICR: The format of these operations is

$$
: C N: k, f, n, V_{1}, L_{1}, R_{1}, \ldots, V_{n}, L_{n}, R_{n}: S(R I C H T) T(W R O N G)
$$

where the string of symbols following the second colon and preceding the last is the argument. The items in the atring separated by a coman have the following meaning:

I Is the correct expression apecified by the programer.
n is an axitmotic expression, the velue of which demotes the number of ordered trepples $V_{1}, L_{1}=R_{1}$ in the string.
V_{1} Is the name of a (simple, singly-doubly subscripted) variable.
I_{i} and R_{i} are arithmetic expressions whose values denote the real interval $\left[L_{i}, R_{i}\right]$ from which a random number is sezouted and assigned to V_{1}.
k is an instivuction flag which may assume the vaiues $\pm 1, \pm 2, \pm 3,+4$. If repeated evalvations are needed, one can take advantage of the fact that f and/or F have been compiled and are in a form for rapid eveluation.

If $|k|=1$, use the new F and the previous f, ignoring any specified f in the argument string. $I f|k|=2$, use the previous F and the naw f. If $|k|=3$, use the new F and the sew $f . \operatorname{If}|k|=4$, use the previous F and the previous f. If $k>0$ and f and F are not resolvable due to operetors, yet $f(X)$ mif X) for each random X, pritat "LOOK OK. YOUR ANSWER SHOULD RHDICE TO P^{H} whexe f is the expression extracted from the argument string. If $k<0$, suppress the printing of the above message.

Upon a call to MATCH, the following activities take place.
(1) Evaluate k.
(2) If $|k|=2$ or 3 , compile f as specified in the argument string and place the code in the correct anwer array for later evalustion. If $|k|=1$ or 4 , ignore the f in the argurent string and assume the previously compiled f, currentiy residing in the correct answer array.
(3) If $|k|=1$ or 3, fetch F from the student buffer and compile
the expression. If compilation is succesaful, place the result in the student answer array. If a syntax error is found, print the appropriate error measage and axit from Marich. This exit is not the normal failure exit in that the answer is not registered as incorrect, but rather as one which has no meaning. The exit is to the point where the student cas type a new F. If $|k|=2$ or 4 , assume the F which alraady resides in compiled form in the student anower array.
(4) Evaluate n.
(5) If $n \leq 0$, ignore this step. If $n>0$, then for $1=1, \ldots, n$, generate a random number in the interval $\left[L_{i}, R_{i}\right]$ and atore it in the location for V_{i}.
(6) Evaluate I and F using the randcin values for the ∇_{i}. If a operator is encountered with argument h, enter the information In the appropriate -table. If the expression for h contains no variable, no entry is made since (h) is constant. If -abs, then $|h|$ is entered as the argument. If denotes exponentiation to a fractional or variable power with variable base, then h consists of the double entry (base, | power \|) where negative powers are changed to positive to allow resolvability of $g(x)^{r}$ and $g(x)^{-r}$.
(7) For $8 \times .5\left(10^{-10}\right)$, test for any one of three condstions: $|\mathrm{f}|<8$ and $|\mathrm{F}|<8 ;|\mathrm{P}-\mathrm{F}|<8$; or $|(\mathrm{f}-\mathrm{F}) / \mathrm{f}|<8$. If any are satisfied, go to Step 8. Otherwise, take the palluici exit.
(8) If both tables are empty, conclude fir and take the success exit from Mack. If only one of the otables is empty, go to

Step 10. If noither e-table is empty, go to Stap 9.
(9) For each entry (ordered pair or triple) in the oteble for $f_{\text {, }}$ search for an identical entry in the -table for F. The arguments must agree within an error tolerance of 6 in the manner specified in Step 7. If, upon completion of the search, every entry in each table has been succeasfully matriaed with an entry in the other table, conciude that f and F are resolvable and take the SUCCESS exit from MMrici. If any entry, in either table, is not accounted for, go to Step 10.
(10) If $k>0$, print the conditional success message "LOOKs OK. YOUR ANSWER SHOULD AEDUCE TO P". If Rexo, suppreas printing, but set a flag for fature checks. In either case, take the SUCCESS exit irom MATCH.

Examples 9-13 are presented below to 111u.itrate how the programmer may typically use MATCH to check a student's answer. The programmer specifiel f and determines the regions D_{i} from which points should be randermily selected. For the purpose of discusaion, on F is also apecifled for the examples. Table 7 presents the corresponding etables which are constructed by MAFcH:

Exazale 9-Two Fi-Functions. Suppose the programer apecifle: $f(x)=x-\sin (x) /(\{\cos (x))$ as the correct anawer. The region for considerstion is $D_{1}=(-\infty, \infty)$ and a typical cail so MATCH is

For any expression F specified by the student, a randam X in the interval $[-9,9]$ is selected and the resulting values of P and F are compared.

Suppose the student specifles $\left(2{ }^{*} x^{*} \cos (x)-\sin (x)\right) /\left(2^{*} \cos (x)\right)$. Since the -tables are empty and $f(X)=F(X)$, the conclusion is $f=F^{\prime}$ and the next PICLS instruction labeiled Rigut is executad.

Example 10--Resolvable and fET. Let $f(x, y)=\sin \left(\log \left(x^{2}\right)+a b s\left(y^{2}-1\right)\right)$. An analysis of f yields six regions: $D_{1}=(x>0, y<-1) ; D_{2}-(x>0,-1<y<1)$; $D_{3}=\{x>0, y>1) ; D_{4}=(2<0, y<-1) ; D_{5}=(x<0,-1<y<1) ;$ and $D_{6}(x<0, y>1)$. A typical call to MAICH IS

```
L1:CN:-3,sin(log(x**2)+abs(y**2-1)), 2,x,0,10,y,-9,-1:S(L2 )F(WRONG)
L2:CN:-4,0,1,y,-1,1:S(L3)F(WRONG)
L3:CN:-4,0,1,y,1,9:S(L4)F(WRONG)
L4:CN:-4,0,1,X,-10,0:S(L5 FF(WRONG)
L5:CN:-4,0,1,y,-1,1:S(I6)F(WRONG)
I6:CN:4,0,1,y,-10,-1:S(RICRT)F(WRONG)
```

The execution of this sequence calls for a comparison of I and F in the regions $D_{1}, D_{2}, D_{3}, D_{6}, D_{5}$, and D_{4}. Suppose the student spacifies

$$
\begin{gathered}
\sin (\log (x * x)) * \cos (\operatorname{abs}((y-1) *(y+1)))+ \\
\cos (\log (x * * 3 / x)) * \sin \left(\operatorname{abs}\left((y-1) * * 2+2^{* y}-2\right)\right) .
\end{gathered}
$$

Since $f(X, Y)=F(X, Y)$ in each D_{1}, the railure exit to WRONG should not occur. Instead, the success exits to L2, L3,...., L6, RIGrif will be taken. In statenent LI, $|k|=3$ which tells MATCH to use the f specified in the argument string and the F from the student burfer. In $L 2-L 6$, $|k|=4$, which tells MATCH to use the f and F which already exist in compiled form. In Ll-L5, k 50 which teils MATCH to aupprees the unresolvability print. In L6; 100 which tells MATCH to print the unresolvability message if the condition occurred in any of the CN's, LiL6. In this example, f and F are resolvable.

Prouple 11. Consider the $f(x, y)$ in Brample 10 and auppose the student apecifies

$$
\begin{gathered}
\sin \left(\log \left(x^{*} x\right)\right) * \cos (\operatorname{abs}((y-1) *(y *-1))) \\
+\cos (\log (x * * 2)) * \sin (y * * 2-1) .
\end{gathered}
$$

Here $f=F$ on D_{1}, D_{3}, D_{4}, and D_{6}, but not on D_{2} and D_{5}. The second $C N$ in Example 9 would detect the condition $f(X, Y) \neq F(X, Y)$ on D_{2} and the failure exit to WRONG would be taken. Resolvability is not checked on D_{2} since F is unconditionally wrong.

Example 12- $1=F$ but Unresolvable. Let $F(x)=(x * * 4) * * .25$ and $f(x)=$ absíx). An analysis of f yields the regions $(x>0)$ and $(x<0)$. on both $f=$. A typical call to MATCH would be

$$
: C N:-3, a b s(x), 1, x,-10,0: S(L 1) F(\text { WRONG })
$$

$$
\text { Il :CN: } 4,0,1, x, 0,10: S(\text { RIGHTT }) F(\text { WRONG })
$$

In the last CN, prior to an exit to RIGHP, the program prints the conditional success message "LOOKS OK. YOUR ANSWER SHOULD REDUCE TO ABS (X).".

Example 13--f and Unresolvable. Let $F(x)=\exp (\ln (x))$ and $f(x)=$ $\ln (\exp (x))$. An analysis of f yields $\{-\infty, \infty\}$ as the single region. A typical call to MATCH is

$$
: C N: 3, \ln (\exp (x)), 1, x,-5,5: S(\text { RIGHT }) F(\text { WRONG }) .
$$

If X is randomly chosen nonpositive, evaluation of F will break down and MAICH will exit to WRONG: If $X>0$, MATCH will print the conditional success message and exit to RICHFT:

The argument string which is passed to MATCH is processed from left to right which allows for random assignment of values to be functionally dependent on previously assigned values. For example,
suppose we define $f(x, y) \min \left(\operatorname{ebs}(\operatorname{mbs}(x)-w)\right.$. The four ractens are $D_{2}=$ $\{x<0,-\infty<y<-x\} ; D_{2}=(x>0,-a<y<x) ; D_{3}=(x<0,-x<y<\infty) ;$ and $D_{4}=(x>0, x<y<\infty)$. A typical call to MANCH to test in each region would be:

$$
\begin{aligned}
& : C N:-3, \ln (e b s(s b s(x)-y)), 2, x_{p}-9,0, y,-9,-x: S(A) P(W) \\
& \text { A:CNI : }-4,0,2, x, 0,9, y,-9, x: S(B) F(W) \\
& B: C N:-4,0,2, x,-9,0, y,-x, 9: S(C) F(W) \\
& C: C N: 4,0,2, x, 0,9, y, x, 9: S(R I C H T) P(W)
\end{aligned}
$$

Table 7. ©-Tables for Examples 9-13
Breample
©-table for F
Gtable for 1

9
10

11

12
13

empty

$\log _{,} x * * 3 / x$
Ebs, $(Y-1) * * 2+2 * Y-2$
$\log _{0} \mathrm{X} * \mathrm{X}$ ebs, $(X-1)$ m $(Y+1)$ $\log , X * * 2$
**, $\mathrm{X} * * 4, .25$
\ln , X
expty
log, $x * * 2$ abs, $Y * * 2-1$
log, $x * * 2$ abs, $Y * * 2-1$ abs, X
$\ln , \exp (x)$

Mathemation Justification of the Method

The small letters z and x will denote variables over C^{n} and R^{n} respectively. The capitel letters Z and X . will denote randomiy selected values of z and x respectively. f and F are considered equivalent over a set S if, for each point p is S, either $f(p)=F(p)$ or both are undefined.

Theorem 1 [18]. Let g be holomorphic in the domain D and auppose gifo. Then the set $V=(z \in D: g(z) m 0)$ has $2 n-d i m e n a t o n a l$ Lebergue maarure zero.

Definition 1 [18]. Let D be a domain in C^{n}. A subset VCD is said to be thin if for every point z in D, there are an open polydisc $\delta(z ; r) C D$ ard a function g holomorphic and not idemedeally zero in $\mathrm{o}(\mathrm{z} ; \mathrm{r})$ such that g vanishes identically on $\mathrm{VnB}(\mathrm{z} ; \mathrm{x})$.

Ramark 1 [18]. The set where a nonzero holomoxphic function vanishes is closed, has no interior, and is thin.

Sheorem 2 [18]. Let V be a thin subset of the connected, open subset DCC ${ }^{\text {n }}$. Then D-V is connected.

Theorem 3 [3]. Let $g(z)$ be analytic in a damain $D R^{2 k}$ and, for some point $\left(z_{l}^{0}, \ldots, z_{k}^{0}\right) \in D$ where $z_{j}^{0}=x_{j}^{0}+i y_{j}^{0}$, let $g(z)$ vanish in the $k-$ dimensional rectangle $\left|x_{j}-x_{j}^{0}\right|\left\langle r_{j}, y_{j}=y_{j}^{0}\right.$ for $j w l, \ldots, k$. Then $g(z)$ vanishes in D.

We can now specify properties of g which will place a theoretical reliability on the method of investigating numerical values of g at randomily selected points. It is possible to generalize tue class of $T_{1}{ }^{-}$ functions to a larger class $\mathbb{T}^{*} \quad \mathrm{~g}: \mathrm{C}^{\mathrm{n}} \rightarrow \mathrm{C}^{\mathrm{J}}$ is in T^{*} if g is anelytic on a region (nonempty, open, connected set) D and analytic in the real sense on $D \cap_{R^{n}}$ with properties (1) D is dense in C^{n}. (2) if L is a nonempty, open, connected set, so is $I \cap D$, and (3) if m_{n} denotes the n dimensional Lebesgue measure, then $\left.m_{2 n}\left\{C^{n}-D\right)_{n}\left(C^{n}-D\right) n_{1}^{i n}\right\}=0$. Properties (1) and (3) serve to insure that a randomiy selected value will fall outside the region of analyticity with probability zero. Property (2) serves to eliminate those functions with -operators. In particular, it rules out branch lines. The class T* has some ciosure properties. If g_{1} and g_{2} are in T^{*}, then $g_{1} \pm g_{2}, g_{1} g_{2}$, and g_{1} / g_{2} ($g_{2} \neq 0$) are in T*. By verifying properties (1), (2), and (3) for
$D=D_{1} I_{2}$ where D_{1} and D_{2} are the domains of g_{1} and g_{2}. it folloras that arme and products are in T^{*}. For the quotient, let $V=\left\{z: g_{2}(z)=0\right\}$. By Remark $1, V$ is thin and closed relative to D_{2}, so $D_{2}-V$ is open, donse in $C^{\text {a }}$ and, by Theorem 2, also connegted. Also, $I \cap\left(D_{2}-V\right)$ is open, nonempty, and by Theorem 2, connected. By Theorem I and property (3), $m_{2 n}\left(C^{n}-\left(D_{2}-v\right)\right\}=0$. By Theorem 3 and property (3), $m_{n}\left\{\left(C^{n}-\left(D_{2}-v\right)\right) n_{n}^{n}\right\}=0$. So $1 / g_{2} \in I *$ and by the product established above, $g_{1} / \mathrm{E}_{2} \in T *$.

Starting with polynomials and the exponential function, it is possible to build the class the T_{1}-functions described in an earlier section. Given f and F in T_{1} where $f F$, then the two can agree only on a nowhere dense set of 2n-dimensional Labeague measure zero. By Theorem 3, they cannot agree on an open subset of R^{n}. Using the ratio of Lebeague measures as the probebility, there is a 0-probability of selecting $X \in \mathbb{R}^{n}$ or $Z \in C^{n}$ where \mathbb{I} and F have the same value.

Concluding Remarks

The discussion in this chapter was intended to display both the power and the dangers in numerically comparing the student's answer with the correct answer. The use of this matching technique in the initial experiment in teaching computational mathematics has been totally successful except for rare instances when the method failed to yield a decision because of unresolvability. However, it was also evident that the student tends to construct responses which are closely related to the instructional materiel. For example, if the correct answer is x, then the atudent is not likely to arbitrarily add and subtract the hyperbolic cosine of x. This tendency of the student along with the author's ability to analyze the correct anower
lends to the method a stability which might not be realized in other appilications. If processing time is no factor and an exact aigebraic algorithm can be applied, it should clearly be used aince the finite precision of a computer can cause failure of a numerical method. Although available methods of testing the equivalence of expressions appear to be sophisticated enough for instructional application in elementary methematics, extensions are needed for those areas in which -type operatoxs are frequently used.

In addition to the theoretical problems coused by opperators, other problems are introduced by variables vinich assume only integer values. In the more general case, it is desirabie to compare two expresaions $f\left(x_{\xi_{1}}, \ldots, x_{\xi_{m}}\right)$ with $F\left(x_{\rho_{1}}, \ldots, x_{p_{m}}\right)$ where x is a vector and ξ_{i} and ρ_{j} are integer-valued subscript expressions depending on integer-valued variables. For the puxposes of testing equivalence of f and F, we treat the members of the array x as independent real variables. Dirficulty arises in uniquely identifying a member of the array by considering the associated subscript expression. Since we have a mapping of integers into integers, random sampling can easily yield the wrong conclusion. For example, let $f\left(x_{k}\right)=x_{k}, F\left(x_{k}=x_{\left(k^{2} / 2-k /\right.}\right.$ 2+1). Then $f\left(x_{k}\right)=F\left(x_{k}\right)$ for $k=1$ or 2 and $f\left(x_{k}\right) \neq F\left(x_{k}\right)$ elsewhere. Also, integer-valued variables may occur in the expressions as nonsubscripts, e.g. $f\left(x_{k}\right)=k \cdot x_{k}^{k-1}$. As a programming technique in the development of the computational mathenatics course, a random value is generated for each subscript variable. The values of the subscript expressions are rounded to the nearest integer and then reduced modulo the dimension of the array in order to identify a position in the array. The expressions are then numerically compared as before. This process is
then repeated with values of the subscript verinioles inexeaned by one. If both numerical comparigons succeed, the expressions are ansumed to be equivalent. In an instructional environment, this mothod has been totaliy successiul in spite of its obvious defects.

A major effort is needed in the areas of atruetrere and content analysis. A student's answor may be correct from the standpoint of equivalence but not in a form for economical evaluation. Neating of polynomisis and forming the sum of nubers starting with the guallest and ending with the largest are two simple examples where it might be useful if the structure of the student's answer could be analyzed. If the student's answer is incorrect, a content analysis is needed to determine how it differs from the correct answer. Manacher [27] proposes using sequences of numbers to check for auch properties ss symetry, correct boundery conditions, and linearity of variables. General advances in content analysis would be a sep toward detecting the source of the student's error.

CHAPTER III

DESIGN AND DEVELOPMENT OF THE CAI COURSE

General Philosophy and Desiga Considerations

A variety of factors must be considered in the design and construction of CAI course m@Gerials. While a clear specification of the course objectives is necessary, one must also consider the capabilities of the available hardware and software and the current practices in instructional design. If the course is to be of significant duration, the element of time may impose additional constraints on the sophistication of the end product. In particular, a large expenditure of man hours is required to develop extensive remedial sequences and multitrack programs. If the effectiveness of the program is to be tested in a production environment, the materials must be organized for ease in administration. This section is a discussion of how these factors affected the design and covistruction of the CAI course in computational mathematics.

As defined by this duthor, the puxpose of a course in computational mathematics is to teach the student how to analyze mathematical problems and appiy numerical methods for an approximate solution. There is a definite emphasis on probiem solving. In terms of ideal stiudent performance, the following general course vbjectives are stated.

1. The student should understand the theoretical developments Which justify the existence of as algorithm. For a given problem, the stucient should determine if the theoretical
conditions are satisfied prior to applying an algorithm.
2. The student should display proficiency in the mechanics of applying an algorithm by working several standard problems.
3. Whenever applicable, the student should determine a priori bounds on the error of approximation by analyzing the error equation.
4. Whenever applicable, the student should estimate the accuracy of the solution by interpreting computational results.

A CAI course in this subject matter should attempt to remove any cumbersome arithmetic or programming requirements which might prevent achievement of these objectives.

At the outset, the course materials were paralleled with CS 414, the undergraduate numerical analysis course at Purdue University. The listed prerequisites for CS 414 were a working knowledge of a computer language and successful completion of the elementary calculus courses. The CAI course assumes the elementary calculus but programming is needed only to the extent that a student must be able to formulate mathematical expressions in a FC_{c} san notation. The prerequisites for CS 414 have been recentily upgraded to include an elementary course in linear algebra. This change is not reflected in the CAI course.

Twenty-four CAI lessons were developed for six general areas of study:

1. errors in representation of numbers and computation (1 lesson)
2. root-finding methods (10 lessons)
3. solution of linear systems (5 lessons)
4. numertcal differentiation (2 lessons)
5. numerical integration (3 lessons)
6. solution of differential equations (3 lessons)

In order to concentrate on the computational and programming difficulties and, at the same time, maintain the standards of the course objectives, a typical lesson consists of three modes of instruction. They are referred to as the tutorial mode, the problem mode, and the investigation mode. These modes are designed to provide the student with increasing flexibility in the problem solving aspects of the course. Three subsequent sections of this chapter are devoted to a description of these modes.

The Student Manual presented in Appendix A was created to handle the problems of administering a CAI course in a production environment. This manual prescribes a systematic approach to the study of each lesson. By following a simple outline, the student may complete the various study activities required in a lesson and gain immediate access to any section of CAI materials. The Student Manual is intended to be selfexplanatory and a further description will not be presented here。

In the area of software support, PICLS was extended to incorporate special routines needed for a more flexible course development. One such routine is the function matching program described in Chapter II. This involved a compilation subsoutine which accepts arithmetic expressions from a terminal, performs a syntactic analysis, and outputs polish expressions, and an interpreter subroutine which evaluates the polish expressions. This body of smecial arithmetic routines served as a basis for other needed features. In those portions of the instruction where the student is expected to formulate a number of mathematical
expressions, subroutines were written to store the expressions and retrieve them for evaluation at a later point in time. Once the syntax of an expression has been checked, the author-programmer may save the expression by a function call :PJ:SAVFCT(N) where N is an integer-valued variable. Any of the previously stored expressions can be evaluated with the numerical result stored in X by the runction call :FJ:FCTVAL(N, X). The specification of the location X and the function number N are under the internal control of the programmer.

The linear notation and restricted character set of the teletype terminal had a definite effect on the design and development of the course material. Special notation had to be defined and the instruction had to include a careful explanation of this notation. Examples of special notation can be found in the lessons on the Newton-Bairstow method, numerical integration, and differential equations. Combined with the restrictions placed on the student response language, the development of some sections became even more difficult. For example, the notation $F^{\prime \prime} X$ was used for the partial derivative of F with respect to X. If the student is asked to form the total derivative of $Y^{\prime}=P(X, Y)=X * * 2+Y$ with respect to X, then the compiler is equipped to process $2 * X+X * * 2+Y$ but syntex errors would be found in the answer $F^{\prime} X+F^{\prime} Y * F$. In this case, the instructional material must clearly request an answer in terms of X and Y. Multiple choice items were used whenever it seemed unnatural to res.rict the symbols in a mathematical response. Another ill effect of the linear notation was apparent in the programming of lengthy formulas. For example, expressions such as

$$
\begin{aligned}
& Y[K+1]=Y[K]+H *\left(F+H *\left(F^{\prime} X+F^{\prime} Y^{*} F^{\prime}\right) / 2\right. \\
& +\left(H^{* *} 2\right) *\left(F^{\prime \prime} X X+2 * F^{\prime \prime} X Y^{*} F^{\prime}+F^{\prime} X^{*} F^{\prime} Y+{ }^{\prime \prime} Y Y^{*} F^{\left.\left.* * 2+F^{*}\left(F^{\prime} Y\right) * * 2\right) / 6\right)}\right.
\end{aligned}
$$

were time-consuring to format ian the program and seemed unnatural to read as teletype output. Still another restriction of the teletype terminal is its lack of graphic capabilities. The graphs and diagrams normally used in a conventional classroom were usually omitted in the CAI course. In the judgement of the author, the slow typing rate and the character orientation of the teletype terminal precluded an effective use of charts and graphs. Although it would have been possible to provide work sheet graphs to assist in the instructional process, the philosophy of the investigation was to deliberately remain computeroriented as opposed to multimedia-oriented.

The instructional sirategies used in the tutorial mode were designed on the basis of what could be done in a reasonably well-defined manner in spite of a seemingly lacking technology. The author firmly agrees with educators that a carefully planned instructional design is critical to the success of CAI and some of the recommended practices were followed. The presentation consists primerily of a linear sequence but can be readily expanded to a multilevel sequence for the express purpose of accelerating the better student and decelerating the weaker student. For each question posed to the student, the strategy is of a somewhat more sophisticated design and will be explained later in this chapter. The following reasons are offered for not designing and implementing a highly sophisticated instructional strategy for the initial system.

1. Man hour requirements could be expected to increase at least linearly with the number of tracks.
2. Experience was needed to establish that the software-hardware
complex was $\%$ workable system.
3. Experience was needed to determine the general reaction of students to CAI for this level and type of mathematical material in order to establish a basis for easier and more difficult tracks.

The next three sections of this chapter describe the purposes and structure of the tutorial mode, the problem mode, and the investigation mode as they exist in the current system. Excerpts of course materiel are presented to demonstrate particular concepts. No attempt is made in this chapter to describe the subject content of the entire body of course material in computational mathematics. A general description of the CAI course material in each of the twenty-five lessons is presented in Appendix B. For an appreciation of the depth of the student.involvement in each of the three modes, the reader is referred to the sample teletype output in Appendix D.

Structure of the Tutorial Mode

The tutorial mode is designed for each lesson with the traditional classroom in mind. Its purpose is to provide the student with those instructional expexiences which would be feasible in the classroom if sufficient time and resources were available. In keeping with the course objectives, the following activities are typical in this mode of instruction.

1. The student is led through the theoretical concepts surrounding a particular method. The student actively participates through constructed responses to questions or multiple choice items.
2. The student participates in a variety of examples and exercises which demonstxate particular concepts and which are interspersed at appropriate places throughout the theoretical developments.
3. The student is led through the analysis of a typical problem and supplies the mathematical formulas needed to apply the algorithm.
4. The student concentrates on the development and formulation and is free from cumbersome arithmetic. This is basically accomplished by allowing the student to construct responses which are equivalent to the correct answer and left in unreduced form.
Prior to beginning the tutorial mode, the student is expected to complete an outside reading assignment. Since the instruction is designed for the average student, the faster student may find this mode to be a review of the outside reading assignment while the slower student is expected to experience greater difficulty and benefit more from the material. All stiudents are exposed to the same core material since the presentation is basically a linear sequence. A skeleton strategy for individualization is incorporated at the item level. At this level, the slower student is momentarily detained and, hopefully, his difficulty will be remedied. The individualization strategy for multiple choice items and constructed mathematical response items are shown in Figures 1 and 2. Multiple choice items are handled in a somewhat simplified manner since the student must select one of a predetermined set of possible answers. Due to a lack of knowleden of how students respond,
the strategy for handing constructed mathematical responses is more complicated and the anticipation of incorrect answers is a difficult task. In order to offset the lack of anticipated answers, the sudent may at any time type HWP and additional information or hints will be prowided. If a student types two successive unanticipated answers, the normal procedure is to give him the correct answer along with a detailed explanation.

The following example of PiCLS code involving a constructed
mathematical response is taken from the tutorial mode of Lesson 2.
This code demonstrates the instructional strategy depicted in Figure 2.

L12:TY:ON Im[0,2], WRITE AN EXIPRESSION FOR MAX (ABS (G' (X))) BY
:TY:CHOOSING A PARTICUJAR VALUE FOR X FROM III[0,2].
Q12:QU:MAX(ABS (G'(X)))=
: MA:HELP:S(Q12)
:TY: $\quad G^{\prime}(X)=-\operatorname{EXP}((1-X) / 2) / 2 . \quad G^{\prime \prime}(X)=\operatorname{EXP}((1-X) / 2) / 4$. SINCE THE EXXP
:TY: FUNCTION IS NEVER O, $G^{\prime \prime}(X)$ IS NEVER ZERO, THAT IS; G' (X) HAS :TY: NO RELATIVE EXXIREME POTNTS. HENCE, THE MAXIMM ON $I=[0,2]$:TY: MUSTT OCCUR AT ONE OF THE ENDPOINIS. TRY AGATN.
YCI: $3, \operatorname{EXP}(1 / 2) / 2,0: S(\operatorname{L13})$
:TY:OK
:WN: $-3, \operatorname{EXP}(-1 / 2) / 2,0: S(Q 12)$
:TY: NO. YOU USED THE WRONG ENDPOINT OF $I=[0,2]$. TRY AGAIN. :WN: $-3,-\operatorname{EXP}(-1 / 2) / 2,0: S(Q 12)$
:TY: NO. YOU USED THE WRONG ENDPOINT OF $I=[0,2]$. ALSO, THE :IY: ABSOLUTE VALUE SHOULD MAKE YOUR ANSWER POSITIVE: TRY AGAIN. :WN: $-3,-\operatorname{EXP}(1 / 2) / 2,0: S(Q 12)$
:TY: NO. THE ABSOLUTE VALUE SHOULD MAKE YOUR ANSWER POSITTVE.
:TY: TRY AGAIN OR TYPE HELP.
:UN: NO. TRY AGAIN OR TYPE HBUP.
"'IY :MAX $\left(A B S\left(G^{\prime}(X)\right)\right)=$
: $\mathrm{NO}:$
:TY: NO. $\operatorname{MAX}\left(\operatorname{ABS}\left(G^{\circ}(X)\right)\right)$ ON $[0,2]$ OCCURS AT X=O. THE ANSWER IS $: T Y: \quad \operatorname{MAX}\left(\operatorname{ABS}\left(G^{\prime}(X)\right) \hat{=} \operatorname{EXP}(1 / 2) / 2\right.$.
:RD:PRESS (RETURN) TO CONTINUE.
L13:TY:SO ABS $\left(G^{\prime}(X)\right)<1$ ON $I=[0,2]$. SINCE ALL CONDITIONS OF THE LINEAR

Figure 1. Instructional Strategy for Multiple Choice Iteas

Figure 2. Instructional Strategy for Constructed Mathematical Reaponces

Prior to the execution of this block of instruction, the student has derived the iteration function $G(X)=\operatorname{EXP}((1-X) / 2)$. In this block of instruction, the student is to ascertatin that $\left|G^{\prime}(X)\right|<1$ on the interval $[0,2]$ by actually computing $\max \left|G^{\prime}(X)\right|$. The correct answer is specified as $\operatorname{EXP}(1 / 2) / 2$ while $\operatorname{EXP}(-1 / 2) / 2,-\operatorname{EXP}(-1 / 2) / 2$, and $-\operatorname{EXP}(1 / 2) / 2$ are anticipated incorrect responses. If the student answers correctly, he advances to the new material beginning at label L13. If the student gives two successive unanticipated answers, he is given the information following the operation :NO:. He then begins the new material by pressing the Return Key. If the student enters a syntactically incorrect expression, the subroutine MATCH (see Chapter II) prints an appropriate error message. Depending on the student, the twenty-five PICLS instructions listed above can create several variations of teletype output. The following dialogue between the student and the program illustrates one possibility. At those points where a student must respond, PICLS types a \# sign at the left margin.

ON $I=[0,2]$, WRITE AN EXPRESSION FOR MAX (ABS (G' $(X)))$ BY CHOOSING A PARTICULAR VALUE FOR X FROM $I=[0,2]$. $\operatorname{MAX}\left(\operatorname{ABS}\left(G^{\prime}(X)\right)\right)=$
\#1/2
NO. TRY AGAIN OR TYPE HELP.
$\operatorname{MAX}\left(\operatorname{ABS}\left(G^{\prime}(X)\right)\right)=$
\#.5* $\mathrm{EBXP}(-.5)$
NO. YOU USED THE WRONG ENDPOINT OF I $m[0,2]$. IRY AGAIN.
$\operatorname{MAX}\left(\operatorname{ABS}\left(G^{\prime}(X)\right)\right)=$
\#.5*EXP(1)**.5
OK
SO ABS(G'(X))<1 ON I=[0,2]. SINCE AIL CONDITIONS OF THE LINEAR

Another possibility is illustrated by the following dialogue.

```
    MAX(ABS(G'(X)))=
# HELP
    G'(X)=-EXP((1-X)/2)/2. G''(X)=\operatorname{BXP}((I-X)/2)/4. SINCE TME EXP
    FUNCTION IS NEVER O,G'(X) IS NEVER ZERO, THAT IS, G"(X) HAS
    NO RELATIVE EXTREME POINTS. HENCE, THE MAXIMUM ON I= [0,2]
    muSt OCCUR at one of the endPOINIS. tRY AGAIN.
    MAX(ABS(G'(X)))=
#O
    NO. TRY AGAIN OR TYPE HELP.
    MAX(ABS(G'(X)))=
# - EXP(1)/2
    NO. MAX(ABS(G`(X))) ON [0,2] OCCURS AT X=0. THE ANSWER IS
    MAX(\operatorname{ABS}(\mp@subsup{G}{}{\prime}(X)))=EXP(1/2)/2.
    PRESS (RETURN) TO CONTINUE.
#
```

A third possibility which also illustrates a syntax error is the following dialogue.

```
    MAX(\operatorname{ABS}(G'(X)))=
# EXP(.5//2
    ILLEGAL CNARACTER OR COMBINATION
        5(
    TYPE A CORRECT EXPRESBION
# EXP(.5)/2
    OK
```

The reader is referred to Appendix D for the teletype output of a complete tutorial mode. Unlike the problem and investigation modes, the process of instruction in the tutorial mode is under the direction of the computer program.

Structure of the Problem Mode

The problem mode is designed to provide the student with the instructional experience derived from solving several typical probleins. In keeping with the objectives of the course, the student is required to

1. analyze the problems and construct the necessary formulas for
application of an algorithm,
2. input his formulas and define values for any parameters associated with the algorithm, and
3. direct the computer to a numerical solution.

A major characteristic of this mode is the complete freedom from bookkeeping chores normally associated with programming. Once the student has correctly formulated the necessary equations, the computer assumes the bookkeeping and computarional work. If the computation is open-ended (e.g. iterative methods or extrapolation to the limit), the student is provided with one logical step of the computational resuits each time he pushes the Return Key. The student terminates this type of problem by typing SIOP. If the mputation is dependent on parameters supplied by the student (e.g. initial estimates for iterative methorls or the step-size for numerical differentiation, integration, and the solution of differential equations), the student aiways has the option of redefining the parameters and repeating the calculation withe out retyping the equations. Thus, a problem may be easily reworked in several ways.

Unlike the tutorial mode, the problem mode does not assign an active teaching function to the computer. Instead, it calls for specific formulas needed to apply an algorithm to a problem and the student must display his ability to work computational problems by supplying the correct formulas. Except for isolated places, the otudent cannot call for HBLP. In the event of an incorrect answer, remedial material is practically nonexistent. Where it does exist, it appears as a statement of fact and is not intended to remedy a misunderstanding
of concepts. Thus, the student must either supply the correct equations or terminate the proklem. If the student raust terminate a problew, he is expected to review his output from the tutorial mode in order to remedy his difficulty. This overall philosophy is employed in an aticempt to establish independence of outside help. Except for YES/NO opticns made available to the student for refomulating a problem, the problemi mode consists entirely of constructed responses. The typicel strategy for processing a single response is shown in Figure 3.

Figure 3. Problem Mode Strategy for Constructed Remponsea

The interested reader may consult Appendix D for the teletype output of a complete problem mode. The following example of PICLS code deals with the trapezoidal rule and is taken from the problem mode of Lesson 18.

PROB1:TY:LET $F(X)=S Q R T(X)+1 / S Q R T(X)$. WE WISH TC AFPROXIMATE
:TY: $\operatorname{INTEGRAL}(F(X) ;[1,2])$
:Th: SPEGIFY THE ERROR IN TERMS OF H AND Z.
:ST: $A=1$
:ST:B=2
Pl:QU:
:AA:SYOP
RI:TY:SELECT ANOTHER PROBLEM.: (Q1)
:CN: $3,(-\mathrm{H} \uparrow 2) *(3-\mathrm{Z}) /(\mathrm{SQRT}(\mathrm{Z} \uparrow 5) * 48), 2, \mathrm{H},-3,3, \mathrm{Z}, 0,1.5: \mathrm{S}(\mathrm{P} 2)$
:TY:OK. $\quad \mathbb{E}(H)=(-H \uparrow 2) *(3-Z) /(48 * 2 \uparrow 2.5)$
:UN: TRY AGATN. $\mathrm{F}^{\prime}(\mathrm{X})=.5^{*}\left(\mathrm{X}^{\uparrow}(-1 / 2)-\mathrm{X}^{\uparrow}(-3 / 2)\right)$.
$: T \mathrm{~T}:(\mathrm{H})=$
:UN: TRY AGAIN. $\mathrm{F}^{\prime \prime}(\mathrm{X})=.25 *(3-\mathrm{X}) /\left(\mathrm{X}^{\uparrow} 2.5\right)$.
$: T Y: E(H)=$
:UN: TRY AGAIN.: (PL)
:NO:
P2:TY: ANALYTICALLY DETERMINE AN H SO MAX (ABS (E (H)) $<.5 * 10^{\dagger}(-2)$ ON $[1,2]$.
:TY:DO THIS BY USING MAX (3-X), MIN(48*Z12.5) ON [1,2].
P3:QU:H=
:AA:STOP:S(R1)
:CN: 3, $\mathrm{H}, \mathrm{l}, \mathrm{H},-9,9:(\mathrm{P} 4)$
P4:ST:H=ANSWER
:IF:H 'LT' O:S(P3)
:TY: H MUST BE POSITIVE.
:IF:H 'GT' . 2*SQRT(3)+.02:S(P3)
:TY: YOUR CHOICE OF H IS TOO LARGE.
:IF:H 'LT' .2*SQRT(3)-.02:S(P3)
:TY: YOUR CHOICE OF H IS TOO SMALL.
: NO O
:ST: $\mathrm{H}=.2^{*} \mathrm{SQRT}(3)$

:TY:THIS H YIELISS THE NJMBER OF SUBDIVISIONE
P6:QU:N=
:AA:STOP:S(RI)
:CN:3,(B-A)/H,0:S(P7)
:CN:-3, INT ((B-A)/H), $0: S(P 7)$
$: C N:-3, \operatorname{INT}((B-A) / H)+1,0: S(W 8)$
:ST: $\mathrm{N}=3$
:UN: NO. THE SPACTNG OF POINTS FOR THE TRAPEZOIDAL RULE
:TY: IS ALWAYS $\mathrm{H}=(\mathrm{B}-\mathrm{A}) / \mathrm{N}$ 。 N , OF COURSE, IS CHOSEN TO BE AN
:TY: INTEGER.:(P6)
:NO:

```
P7:ST: \(\mathrm{Nr} m \mathrm{INT}(\mathrm{B}-\mathrm{A}) / \mathrm{H})+1\)
    :FJ:OUIPUII( \(1, N,(38 H\) WE CHOOSE THE FIRST LARGER INIEGER N=,F2.0))
W8:CN:3,Z,1,2,-9,9:(38)
P8:NO:
:TY:WRITE IHE H AND THE TRAPEZOIDAL RULE FOR N SUBDIVISSIONS.
P17:QU:HE
:AA:STOP:S(RI)
:UN: \(3,(B-A) / N, 0: S(P 18)\)
:UN: NO. TRY AGATN.: (P17)
P18:NO:
:SIT : \(\mathrm{H}=(\mathrm{B}-\mathrm{A}) / \mathrm{N}\)
:ST:F[O]=2
:ST: \(: \operatorname{F}[1]=3.5 / \operatorname{SQRT}(3)\)
:ST: \(F[2]=8 / \operatorname{SQRT}(15)\)
:ST:T[3]=3/SQRT(2)
\(: S T: T T=(F[0]+2 *(F[1]+F[2])+F[3]) / 6\)
P19:QU:II=
:AA:STOP:S(RI)
:CN:3,TP, \(0: S(F 20)\)
:UN: TRAPEZCIDAL RULE WITH FOUR POINIS SINCE \(\mathrm{N}+1=4 .:(\) P19 \()\)
P20:FJ:OUTPUT(1,TT, (8H OK. IT =, E23.15) )
:ST:TTm 2* ( \(5 *\) SQRT (2) -4 )/3
```


The following teletype output represents one possible successful
path through the above code.

LET $F(X)=S Q R T(X)+1 / S Q R T(X)$. WE WISH TO APPROXIMATE
InTECRAL $(F(X) ;[1,2])$
SPECIFY THE EFROR IN TERMS OF H AND Z.
$\mathrm{E}(\mathrm{H})=$
\#-(Hヶ2)*(3-Z)/(SQRT $(2 \uparrow 5) * 48)$
OK. $E(H)=(-H \uparrow 2) *(3-Z) /(48 * Z \uparrow 2.5)$
ANALYTICALLY DETMRMTNE AN H SO MAX (ABS $(E(H)))<.5 * 10 \dagger(-2)$ ON $[1,2]$.
DO THIS BY USING MAX ($3-X$), $\operatorname{MIN}(48 * Z \uparrow 2.5)$ ON $[\lambda, 2]$.
$\mathrm{H}=$
\#(3/25)**.5
OK. ACTUAL,LY, $\mathrm{H}=.2 * \operatorname{SQRT}(3)=\quad .346410161513774 \mathrm{E}+00$
THIS H YIELDS THE NUMBER OF SUBDIVISIONS
$\mathrm{N}=$
\#3
WRITE TITE H AND THE TRAPEZOIDAL RULE FOR N SUBDIVISIONS.
$\mathrm{H}=$
\#1/3
II $=$
$\#(H / 2) *\left(F[0]+2^{*}(F[1]+F[2])+F[3]\right)$
CK. IT $=1.204899241064024 \mathrm{E}+01$
THE TRUE VALUE IS INTEGRAL $(F(X) ;[1,2])=.204737854124363 \mathrm{E}+01$

Prior to entering the problem mode, the student is expected to complete the tutorial mode and then consult the student Manual for a statement of the problems. In this way, the student can leave the terminal in order to analyze and formulate the equations and return at a later time to imput his formulas and obtain a numerical solution.

Structure of the Invesicigation Mode

The philosophy of this mode differs from the other two in that the computer does not assume an active teaching role and the student is not required to demonstrate previousiy acquired knowledge. It is designed to release the student from the constraints of the other modes and provide facilities for the rapid solution of problems originated by the student. Structurally, the investigation mode is similar to the problem mode. The student must formulate equations in order to apply an algorithm and, in turn, the computer assumes the usual bookkeeping chores associated with normal programming and provides numerical results. As formulas are input, they are checked only for syntax errors and seved for later evaluation. The following dialogue is a possible excerpt from the investigation mode of Lesson 7. It shows how a student may approximate the numerical solution to a system of equations.

```
    DEFINE THE ITERATION EQUATIONS
    x[K+1]=
#.1*SIN(X[K])+.2*COS(Y[K])
    Y[K+1]=
#.1* COS(X[K])-.2*SIN(Y[K])
    DEFINE THE STARTING VALUES
    x[0]=
#1/5
    Y[0]=
#O
    EACH TIME THE (REIURN) KEY IS PUSHED, TWO ITERATIONS WIIL BE
    PRINTIED. TYPE 'STOP' TO TERMINATE TME ITERATION.
#
```

K	X[K]	$\mathrm{Y}[\mathrm{K}]$	K	$\mathrm{X}[\mathrm{K}]$	$\mathbf{Y}[\mathrm{K}]$
1	. $21986693 \mathrm{E}+00$.98006658E-01	2	.22085021E+00	.78022681®-01
\#					
3	. $22129 \% 748+00$.81982447E-01	4	. $22127783 \mathrm{E}+00$. $811883220 \%-01$
\#					
5	.22128894Ei00	.81342965E-01	6	. $22126743 \mathrm{~F}+00$.81510277E-01
\#					
7	. $22128780 \mathrm{E}+00$.81317307E-01	8	.22123773E+00	.813.6c2 $7 \mathrm{~T}-01$
\#STOP					
DO YOU WISH TO TRY A DIFFERENT (X[0],Y[0])?					
\#NO YOU WTGH on Pmotive mme					
\#					

Since the problems originate with the stucent, he aust determine if his formulation is correct and he must interpret the numerical results.

The investigation mode is optional and may be used by the student at any time. Prior to beginning an investigation mode, the student is expected to consult the Student Manual for a format description of the required formulas. Hopefully, the tutorial and problem modes provide a source of problems for investigation. In any event, anggesied problems are stated in the Student Manual. The reader is referred to Appondix 1 for the teletype output of a complete investigation mode.

Special Program Features

In selected problem and investigation modes, the student is given the option of using partisil precision arithmetic in the computation as an aid in the study of loss of significance or the propogation of roundoff error. In other places, the computer is used to generate a virtwally Inexhaustible supply of problems and the student has the option of requesting such a problem from the computer. For both features, the
computer appears to be an ideal medium and several applications are discussed in this section.

Partial precision is optionally available to the atudent in the problem-investigation mode of Lesson B, in the investigation mode of Lesson 11, and in the problem-investigation mode of Lesson 13. In each of the three modes, the student may specify a precision of $p=4,6$, or δ decimal digits. Full single precision is assumed in Lesson B if the student specinies $p=15$. The incernal effect is to round each normalized floating number in the ($p+1$)-st digit and retein the first p digits. If x is an input or the result of an arithmetic operation $+,-{ }^{*}, /$, and x is not zero, it is reduced to a p-significant decimal digit normalized flosting point number by the following algorithm:

```
\(m-\log _{10}|x|\)
\(m \leftarrow\left\{\begin{array}{l}m+1 \text { if } m>0 \\ m+1 \text { if } m \leq 0 \text { end } m \text { is an integer } \\ m \quad \text { otherwise } \\ k \leftarrow p-\operatorname{Int}(m) \\ x \leftarrow \operatorname{Int}\left(x \cdot 10^{k}+.5 \cdot \frac{|x|}{x}\right) / 10^{k}\end{array}, l\right.\)
```

Since the mantissa of a floating point number consists of 48 binary bits, p is restricted to the range $1 \leq p<15$. Since the internal arithmetic is binary, the algorithm provides an approximate p-digit decimal calculator.

In the study of ill-conditioned linear systems; the following algorithm was used to generate the $n \times n$ coefficient matrix A in the problem-investigation mode of Lesson 13.

1. Select an integer i at random so that $1<i \leq n$.
2. For each $j \neq i$ and $k=1, \ldots, n$, randomly select $a_{j k} \epsilon(-9,9)$.
3. For $k=1, \ldots, 1-1$, randomly select $r_{k} \in(-9,9)$. If $r_{k}=0$ for all k, repeat this step.
4. Compute the multipliers ${\underset{p}{p}}^{p}=r_{p}^{2} / \sum_{k=1}^{j-1} r_{k}^{2}$ for $p=1, \ldots, i-1$.
5. Compute the fth row as a "nearly" linear combination of the first $1-1$ rows by $a_{i k}=\left[1-(.1)^{k+1}\right] s_{k}$ for $k=1, \ldots, n$ where $S_{k}=\sum_{p=1}^{i-1} \alpha_{p} a_{p k}$.
6. If any row has less than two nonzero elements, restart at Step 2.

For this class of matrices, one can bound the normalized determinant by \mid norm $|A| \mid<.0102$. Denote the $i k$ cofactor of A by $(-1)^{i+k}\left|A_{i k}\right|$ and define $\beta_{j}=\left(\sum_{k=1}^{n} a_{j k}^{2}\right)^{\frac{1}{2}}$. Then

$$
\frac{\left\|A_{i k}\right\|}{\beta_{1} \cdots \beta_{n}} \leq \frac{\left\|A_{i k}\right\|}{\beta_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(\beta_{j}^{2}-a_{j k}^{2}\right)^{\frac{1}{2}}}=\frac{|n o r m| A_{i k} \|}{\beta_{i}}
$$

Expanding on the fth row,

$$
\begin{aligned}
|A| & =\sum_{k=1}^{n}(-1)^{1+k} a_{i k}\left|A_{i k}\right|=\sum_{k=1}^{n}(-1)^{i+k} s_{k}\left[1-(.1)^{k+1}\right]\left|A_{i k}\right| \\
& =\sum_{k=1}^{n}(-1)^{1+k+1}(.1)^{k+1} s_{k}\left|A_{i k}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
|\operatorname{norm}| A|\mid & \leq \sum_{k=1}^{n}(.1)^{k+1} \frac{\left|s_{k}\right|| | A_{i k}| |}{\beta_{1} \cdots \beta_{n}} \leq \frac{1}{\beta_{i}} \sum_{k=1}^{n}(.1 .)^{k+1}\left|s_{k}\right| \\
& \leq \frac{1}{\beta_{1}} \sum_{k=1}^{n}(.1)^{k+1}\left|s_{k}\right|
\end{aligned}
$$

Using

$$
\beta_{i}=\left(\sum_{k=1}^{n}\left[1-(.1)^{k+1}\right]^{2} s_{k}^{2}\right)^{\frac{1}{2}} \geq\left[1-(.1)^{2}\right]\left(\sum_{k=1}^{n} s_{k}^{2}\right)^{\frac{1}{2}}
$$

and

$$
\sum_{k=1}^{n}(.1)^{k+1}\left|s_{k}\right| \leq\left(\sum_{k=1}^{n}(.01)^{k+1} \sum_{k=1}^{n} s_{k}^{2}\right)^{\frac{1}{2}}
$$

we have

$$
\mid \text { norm }|A| \left\lvert\, \leq \frac{\left(\sum_{k=1}^{n}-(.01)^{k+1}\right)^{\frac{1}{2}}}{.99}=\frac{1}{99}\left\{\frac{1-(.01)^{n}}{.99}\right\}^{\frac{1}{2}}\right.
$$

This class of matrices is conditioned to significantly perturb the true solution if the student elects to use 4-digit accuracy. Even for pwor 8, the concept of an ill-conditioned system is usually demonstrated. The student may observe the difference in the results by using several values for p. As an example of the above discussion, the following dialogue may take place in the problem-investigation mode of Lesson 13.

PROBXIEM 6.
STATE THE DESIRED DTMENSION OF THE A-MATRIX ($2,3,4$,NONE). N= \#3
DO YOU WISH TO DEFINE YOUR OWN A-MATRIX AND B-VECTOR?
\#10
$M=(4,6,8)=$ NO. SIGNIFICANI FIGURES FOR INTERNAL COMPUTATIONS. M= \#6
the a-matrix and b-vector are now being setup --- Wait.
NOW READY FOR GAUSSIAN ELIMITIATION
the curreni auchented matrix Is
$.185938 \mathrm{E}+01 \quad .434347 \mathrm{E}+01 \quad .563152 \mathrm{E}+01 \quad .386653 \mathrm{E}+02$
$.315264 \mathrm{E}+01-.334289 \mathrm{E}+01 \quad .568190 \mathrm{E}+01-.344478 \mathrm{E}+01$
$.273138 \mathrm{E}+01-.100216 \mathrm{E}+01 \quad .566600 \mathrm{E}+01 \quad .945906 \mathrm{E}+01$
DO YOU WISH TO INTERCHANGE ROWS?
\#YES
SPECIFY I AND J FOR INTERCHANGE OF ITH AND JTH ROWS.
I=
\#1
$J=$
\#2
THE CURRENTI AUGMENTED MATRTE IS
$.315264 \mathrm{E}+01-.334289 \mathrm{E}+01 \quad .568190 \mathrm{E}+01-.344478 \mathrm{E}+01$
$.185938 \mathrm{E}+01 \quad .434347 \mathrm{E}+61 \quad .565252 \mathrm{E}+01 \quad .386653 \mathrm{E}+02$
$.273138 \mathrm{E}+01-.100216 \mathrm{E}+\mathrm{Cl} \quad .566600 \mathrm{E}+01 \quad .945906 \mathrm{E}+01$
DO YOU WISH TO INYYERCHANGE ROWS?
\#5 J
WAIT FOR CURRENT STAGE OF GAUSSIAN ELIMINATION TO BE PERFORMED. tHE CURRENT AUGNENTED MATKIX IS

$.315264 \mathrm{E}+01$	$-.334289 \mathrm{E}+01$	$.568190 \mathrm{E}+01$	$-.344478 \mathrm{E}+01$
0.	$.631506 \mathrm{E}+01$	$.228042 \mathrm{E}+01$	$.406970 \mathrm{E}+02$
0.	$.189405 \mathrm{E}+01$	$.743320 \mathrm{E}+00$	$.124436 \mathrm{E}+02$

DO YOU WISH TO INTERCHANGE ROWS?
\#NO
WAIT FOR CURRENT STAGE OF GAUSSIAN ELIMINATION TO BE PERFORMED. the Current augnented matrix is

$.315264 \mathrm{E}+01$	$-.334289 \mathrm{E}+01$	$.568190 \mathrm{E}+01$	$-.344478 \mathrm{E}+01$
0.	$0.632506 \mathrm{E}+01$	$.228042 \mathrm{E}+01$	$.406970 \mathrm{~F}+02$
0.	0.	$.593630 \mathrm{E}-01$	$.237500 \mathrm{E}+00$

DO YOU WANT $\operatorname{NORM}(\operatorname{DET}(A))$?
\#YES
$\operatorname{NORM}(\operatorname{DET}(A))=-.345434331147931 E-02$
DO YOU WANT THE SOLUTION FOR X BY BACK-SUBSTITUTION?
\#YES
X3 $=\quad .400081 \mathrm{E}+01$
X2= .499971E+01
Xl= -. $300177 \mathrm{E}+01$
DO YOU WANT THE RESDUUALS?
\#YES
(Student directs computer to a solution of the error system)
$E Z_{=}=-.746691 E-03$
E2= .269649E-03
El= $\quad .163118 \mathrm{E}-02$

```
THE IMPTROVED SOLUIION IS
X3= .400006R+01
X2= .499998E+01
Xl= -.300014E+01
DO YOU WANT THE RESIDUALS?
```

Another example of computer supplied problems can be found in Leason 10 dealing with the Newton-Bairstow method. In the problem mode, third or fourth degree polynomials with random complex roots are generated for the student by the following method:

1. Randomly select α, β, A, B, and C from the interval (-9,9) for the complex root $\alpha+\beta i$ and the factor $B x+C$ or $A x^{2}+B x+C$.
2. Randomly select the degree $n=3$ or 4.
3. If $n=3$, compute the coefficients a_{i} for the polynomial $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=\left(x^{2}-20 x+\alpha^{2}+\beta^{2}\right)(B x+C)$. If $n=4$, compute the coefficients a_{i} for the polynomial
$p(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=\left(x^{2}-20 x+\alpha^{2}+\beta^{2}\right)\left(A x^{2}+B x+C\right)$.
The student is provided with the coefficients a_{1} and is told that $p(x)$ has a complex root in the rectangle with vertices $(\operatorname{Int}(\alpha)+1, \operatorname{Int}(\beta)+1)$. The student must estimate a quadratic factor of $p(x)$, define the recursion formulas for the Newton-Bairstow method, and direct the computer through successive iterations to find the quadratic factor $x^{2}-200 x+\alpha^{2}+\beta^{2}$.

Concluding Rernarks

The previous sections of this chapter are intended to describe the structure of the CAI course as it was designed and implemented. Throughout the programming and experimentation stages, it became increasingly evident that the design constraints were too stringent. Aa expanded or modified version of the systern is needed to provide a programmer, as well as the students, with more Plexibility. This section proposes some
extensions or chunges which can be made within the framework of existing technology.

One area which should be expanded deals with broadening the base of mathematical communication between the student and the computer system. This is particularly important since the construction of instructional materials and the manner in which questions sie posed to the student often reflect the limitations placed on the student in his construction of answers. Subsequent versions should have an expended form of response lenguage whicn is partially controlled by the programmer. Some suggested features are 1 isted here.

1. The programmer should have the capability of defining new functions and making them available to the student. Function names should not be restricted to alphabetic and nuweric characters. For example, at selected places it vould be convenient to define a function $\mathrm{F}^{\prime \prime}(\operatorname{ARG})$ and allow the student to use $F^{\prime \prime}(x)$ in his answer. Another function which might be usefui to the student is $\operatorname{SUM}(G[I] ; I=1, N)$. Given $F(X)=\operatorname{SIN}(X)$, $X[0]=1$, and $[I+1]-X[I]=\{=.2$, the student would probably display as much knowledge by constructing the answer (H/2)*(SIN(1) $+\operatorname{STN}(2)+2 * \operatorname{SuM}(\sin (X[I] ; I=1,4)))$ as he would in construciting $(H / 2) *(\operatorname{SIN}(1)+2 *(\operatorname{SIN}(1.2)+\operatorname{SIN}(1.4)+\operatorname{SIN}(1.6)+\operatorname{SIN}(1.8))+\operatorname{SIN}(2))$.

A greater freedom in constructing responses may inspire the student to concentrate more on the concepts involved.
2. The student shouid have the capability of defining his own functions. Given the greater freedom suggested above in constructing responses, the student would no doubt begin to use
unariticipated function names. As an example, suppose $F(x)=(1-1 / x)$ and the author failed to internally define the function $F^{\prime}(x)=1 / x \uparrow 2$. If the student constructs the answer $X[K]-F(X[K]) / F^{\prime}(X[K])$, the system should interact with the student by asking for a new answer or a definition of $F^{\prime}(A R G)$.
3. In order to offset some of the difficulties in determining equivalence of expressions, the programer should have the capability of enabling or disabling standard functions. For example, if the programmer wants to disallow the use of the ARCSIN function, he would turn on a disable flag. At a later point, he may wish to enable ARCSIN.
4. The student should be able to escape the constraints of any mode by antering a computation mode where he could construct and execute programs.

The incorporation of these and similar features requires careful study and planning since a more sopaisticated process of matching expressions may be required.

The strategy for processing an individual constructed response (see Figure 2) can be made more effective through a careful study of the student records from the initial experiment. Where little knowledga was initially available on how students respond, it is now possible to begin to enlarge the list of anticipated incorrect responses. Items whicin are particularly difficult may be changed to ailow nore than one call for HELP. Unnecessary items may be deletcd from the instructional sequence.

With some feel for the difficulty of the instruction in the tutorial modes, itc is now possible to begin the construction of multilevel
sequences. Existing technology, however, does not guarantee an effective method for choosing or altering the level of instruction for any given stuadent, Examinations can be destgned which will allow a student to bypass a section of the instruction or test a efudent upon completion of a lesson.

Somewhat more definite changes are prescribed for some of the problem modes in order to require a deeper involvement on the part of the student. The current strategy in a problem mode is to ask the student for the equations and parameters in the order they are needed to define the computational procedure. This ordered call for equations tends to serve as an overall prompt or hint, contrary to the philosophy of this mode. A new approach would require the student to work from a basic get of symbols and define the computational procedure in his own way. Problem 3 of the problem mode in Lesson 21 is chosen here to illustrate these concepts. The student must apply Taylor algorithms of orders 1 , 2 , and 3 to approximate $y(2)$ given $y^{\prime}=-x y+1 / y^{2}, y(1)=1$. One possible student formulation is presented in the following dialogue.

```
    PROELEM 3. (CF. CONIE, EX. 6.3-1)
    \(\operatorname{LET} Y^{\prime}=F(X, Y)=-X * Y+1 /(Y \uparrow 2),[A, B]=[1,2]\), AND \(Y(1)=1\).
    SPECIFY THE PARTIAL DERIVATIVES IIN TERMS OF X AND Y.
    FX= \(\mathrm{F}^{\prime} \mathrm{X}=\)
\#-Y
    \(\mathrm{FY}=\mathrm{F}^{\mathrm{Y}} \mathrm{Y}=\)
\(\#-X-2, Y * * 3\)
    FXX= \(\mathrm{F}^{\prime \prime} \mathrm{XX}=\)
\#O
    FYY FF"YY=
\#6/Y**4
    FXY \(=\mathrm{F}^{1 \prime} \mathrm{XY}=\)
\#-1
    SPECIFY THE DESIRED ORDER OF THE TAYLOR ALGORITHM ( \(1,2,3, \mathrm{NONE}\) ).
    ORDEFR K=
\#3
```

THE TAYLOR ALGORITHM IS $Y[I+1]=Y[I]+H * T(X[I], Y[I])$.
YOU HAVE CHOSEA ORDER 3.
DEFINE $T(X, Y$) IN TERMS OF H; X, ARD Y. IF YOU WISH, YOU MAY
USE THE SYMROLS F, FX, FY, FXX, FYY, AND FXY.
$T(X, Y)=$
$\# F+H *((-Y-F Y * F) / 2+H *(-2 * F+F Y Y * F * * 2-Y * F Y+F * F Y * * 2) / 6)$
SPECIFY N, THE MINBER OF INTEGPATION STEPS FROM A TO B. H WILL BE
COMPUTED AS $\mathrm{H}=(\mathrm{B}-\mathrm{A}) / \mathrm{N}$. CHOORE M-101.
$17=$
\#

A typical dialogue using the proposed strategy would be

PROBLEM 3. $Y^{9}=F(X, Y)=X * Y+1 /(Y \uparrow 2),[A, B]=[1,2], \operatorname{AND} Y(1)=1$. SPECIFY THE DESIRED ORDER OF THE TAYYOR ALCORIMHM. ORDER K=
\#3
POEMUNAIE THE COMPUTATIONAL PROCHDURE $\mathrm{Y}[\mathrm{I}+1]=\mathrm{Y}[\mathrm{I}]+\mathrm{H} * \mathrm{~T}(\mathrm{X}[\mathrm{I}], \mathrm{Y}[\mathrm{I}])$
BY DRFINING AN APPROPRIATE SEQUENCE OF FUNCTIONS (FX, FNY,
FXX, FXY, FYY,T).
WHICH FUNCTION DO YOU WISH TO DEFINE?
\#FY
DEFTNE $F Y(X, Y)=$
\#-X-2/Y**3
WHICH FUNCIIION DO YOU WISH TO DEFINE?
\#FYY

- DEFINE FYY(X,y) $=$
\#6/Y**4
WHICH FUNCTION DO YOU WISH TO DEFITEE?
\#T
DEFTNT $T(X, Y)=$

FORMULATION IS CORFECT.
SRECIFY N, THE ---
(etc.)

Using the proposed strategy, the student can determine his own path to a correct formulation of a problem. In the above example, one student may choose to derine $T(X, Y)$ completely in terms of X and Y and avoid defining the partial derivatives. Another student may wish to define all partial derivatives prior to defining T. If, at any stage, the student types an expression which uses a function not previously formulated, the expression would not be accepted. Each formula entered by the student
can be checked in exactly the same way as it is done in the axisting system.

No strategy changes are proposed for the investigation modes. In programing these modes, the major difficulty arises in trying to anticipate the needs of the student. From the author's point of view, the investigation modes satisfy the purposes for which they are constructed. Their actual usefulness, in an instructional environment, is yet to be determined. This will be pointed out again in Chapter IV.

Finally, the examples of computer supplied problems demonitrate that this concept can be used in many places in a CAI course in computational mathematics. Technically feasible, their overall usefulness remains to be explored.

CHAPTER IV
 EXPPRRIEMTAL RESULTS AND GEMERAL CONCLUSIONS

The Purpose and General History of the Experiment

In keeping with the general objectives of this investigation, this experiment using CAI for computational mathematics was concerned with three basic questions:

1. How do students react to the use of CAI for computational mathematics?
2. What expenditure in time and doilers is required by the teaching metbods described in Chapter III?
3. How effective are these methods in teaching computational mathematics?

Although complete answers to these questions would be desirable, the purpose of this experiment was to examine initial trends and indications.

A forty-five item questionnaire was designed to provide some answers to the first question. This questionnaire is presented in Appeniix C. In psrticular, the items on the questionnaire were grouped into three general categories:

1. an evaluation of the structure of the instructional program and the overall and relative merits of the tutorial mode, problem mode and investigation mode,
2. an evaluation of the teletype terminal, and
3. reactions or opinions to miscellaneous iteme of interest to
the author.
In order to obtain an estimate of the expenditure of resources, records were maintained on the deve? opmental time requirements of the author-programmer, the terminal time requircments of the students, and the computer central processor and peripheral processor time requirements. For this application, the central processor time consists primarily of the execution time required by the PICLS interpreter when it resides as a program in the central memory of the CDC 6500 computer. The peripheral processor time consists primarily of the time required by auxiliary processors to service the terminal and to transfer PICLS course materials from disk storage to central memory for processing by the PICLS interpreter.

Estimates on the effectiveness of CAI are provided by a descriptive comparison of the scores on exeminations administered to both the CAI and conventional students. The examinations in Appendix C were designed to test the student on

1. his knowledge of selected theoretical concepts,
2. his ability to use theory in an analysis of problems,
3. his ability to apply algorithms, and
4. his ability to finterpret numerical results.

Initial trends and indications, provided by the experiment, will be presented in detail in later sections of this chapter.

Six students were randomly selected from a CS 414 class for the Fall, 1969, CAI experiment. From sin operational point of view, the experiment was not without difficulties. Hardward problems on the CDC 6500 combined with software problems of interfacing PICLS with the interactive features of the MACE operating syatem required an initial
curtailment of the available terminal hours. Extra work on weekene.s and at odd hours was necessary to compensate for system breakdowns and to keep pace with the conventional class. Three of the CAI students volunteexed to continue in a pregram of this type and the other three were returned to the conventional group. As the stability of the hardwaresoftware complex gradually improved, a graduate student volunteer was added to the CAI group. For convenience of discussion and purposes of analysis, the original three CAI students w: L ll be referred to by the numbers 34,35 , and 36 and collectively as CAI-1=\{34,35,36). The graduate volunteer will be referred to as student 37 and the entire collection of CAI students will be referred to as CAI- $2=(34,35,36,37)$.

For CAI-1, the duration of the experiment was approximately oleven weeks for the completion of twenty-five lessons. This coincided with twenty-nine fifty minute conventional lectures, three examinations, and two holiday periods. For student 37, the duration of the experiment was the amount of time required to cover computer lessons 7-23 after the first examination.

Studeats 36 and 37 were regularly scheduled for three two-hour sessions each week while students 34 and 35 were scheduled for two threehour sessions each week. Makeup hours were available upon request during evenings and on weekends.

The CAI students did not attend the conventional lectures but they were required to take the examinations with the conventional class. Upon completion of the experiment, the students filled out a questionnaire and returned to the conventional clasaroom for the duration of the semester.

Characteristics of the GAI and Conventional Groups

Many variables may be involved in accurately predicting atudent perfoxmance and it is not clear which play a dominant role or which are applicable in predicting the performance of CAI students. The author felt that two availabl.e measures might be used to predict achievement in a computational mathematics course:

1. the previous number of semester hours in mathematics which might weasure the student's maturity in mathematics, and
2. the cumulative gradepoint in previous mathematics courses which might measure a host of variables such as IQ, aptitude, motivation, etc.

The information on previous mathematics hours and gradepoint was gathered from a questionnaire for each of the thirty-seven students who completed the CS 414 course. The average grade point (gp) and mathematics hours (mh) are listed in Table 8 for the following classes of itudents: TOTAL= $\{1,2, \ldots, 37\}=t o t a l$ population $C^{*}=\{1,2, \ldots, 33\}=o r i g i n a l$ conventional group C=C*- $\{13,14,29\}=$ conventional students who took all examinations CAI-1=\{34,35,36\}=original CAI students CAI- $2=\{34,35,36,37\}=$ total CAI students The gp and mh were rounded to the nearest one-tenth of a point. Comparisons of CAI-1 and CAI-2 were made with C and subsets of C rather than C* since three students in C* failed to teke an examination. Rather than counting the score oi zero on the missed examination for students 13, 14, and 29, these students were eliminated from consideration.

Table 8 shows that CAI-1 had a comparatively low gp and mh. This
was the result of two eifects. Firgt, the lower gP and mh students were the ones to volunteer for retention in the experiment. Secondly, the usual drop out of conventionel students was concentrated in the low enp and mh range, thereby increasing the average gp and $m h$ of the remaining conventional group C.

Table 8. Mathematics Background for Various Groups

	TOTAL	C*	C	CAI-1	CAI-2
NO. Students	37	33	30	3	4
Average gP	4.8	4.9	4.9	4.1	4.4
Averaje mh	128.5	18.3	19.0	13.7	20.3

The relative rank of each student is given for mh in Table 9 and 69 in Table 10. An examination of the mh and gp figures in Tables 8-10 for the individual members and group averages indicates several things:

1. CAI-1 cannot be expected to compare favorably with C.
2. CAI-2 should compare more favorably with C than CAI-1 compares with C.
3. In terms of both gp and mh, student 37 appears comparable with student 10, but not with any other members of the class.
4. The deletion of $\{13,14,29\}$ from $C *$ to form C increased the mh of the conventional group.
5. Neither CAI-1 nor CAI-2 are totally representative of C. This last point is further substantiated by investigating the correlation between mh and gp:

$$
\begin{aligned}
& r_{\operatorname{mh} \times B P}(\text { CAI-2 })=.81 \\
& r_{m h} \times{ }_{B P}(C)=.12
\end{aligned}
$$

Table 9. Rankings by math Semester Hours (wh)

| | | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| mh | 23 | 21 | 14 | 17 | 6 | 17 | 17 | 16 | 13 | 40 | 24 | 18 | 14 |
| Renk | $5-7$ | $10-13$ | $28-31$ | $17-25$ | 37 | $17-25$ | $17-25$ | $26-27$ | $32-33$ | $1-2$ | $3-4$ | $14-16$ | $28-31$ |
| Student | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| mh | 10 | 17 | 12 | 22 | 17 | 17 | 18 | 18 | 16 | 23 | 22 | 21 | 17 |
| Rank | 36 | $17-25$ | 34 | $8-9$ | $17-25$ | $17-25$ | $14-16$ | $14-16$ | $26-27$ | $5-7$ | $8-9$ | $10-13$ | $17-25$ |
| Student | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | | |
| mh | 21 | 17 | 11 | 17 | 21 | 23 | 24 | 13 | 14 | 14 | 40 | | |
| Rank | $10-13$ | $17-25$ | 35 | $17-25$ | $10-13$ | $5-7$ | $3-4$ | $32-33$ | $28-31$ | $28-31$ | $1-2$ | | |

Table 10. Rankings by Math Gradepoint isp)

Student sp Rank	$\begin{aligned} & 1 \\ & 5.3 \\ & 9-11 \end{aligned}$	$\begin{gathered} 2 \\ 6.0 \\ 1-2 \end{gathered}$	$\begin{gathered} 3 \\ 4.5 \\ 23-25 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 6.0 \\ 1-2 \\ \hline \end{gathered}$	5 5.5 $5-7$	$\begin{gathered} 6 \\ 4.8 \\ 17-18 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 5.1 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 5.3 \\ 9-11 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ 5.0 \\ 15-16 \\ \hline \end{gathered}$	$\begin{array}{r} 10 \\ 5.5 \\ 5-7 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ 4.2 \\ 32.33 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ 4.2 \\ 32-33 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ 4.4 \\ 26-30 \\ \hline \end{array}$
Student	14	15	16	17	18	19	20	21	22	23	24	25	26
8P	5.0	4.8	3.6	4.5	4.0	5.5	4.4	4.7	5.4	4.7	5.9	4.7	5.2
Rank	15-16	17-18	36-37	23-25	35	5-7	26-30	19-22	8	19-22	3	19-22	12-13
Student	27	28	29	30	31	32	33	34	35	36	37		
SP	4.1	5.3	4.4	4.3	4.7	5.6	4.5	4.4	4.4	3.6	5.2		
Rank	34	9-11	26-30	31	19-22	4	23-25	26-30	26-30	36-37	12-13		

In CAI-2, gp and mh are highly correlated. This is not true in C. In view of the loss of randomness in the sample and a lack of middle to upper gp and mak students in the sample, a ciose descriptive analysis of the results was conducted rather than a statistical analysis.

An Analysis of Student Performances

Three examinations totalling twenty-five items were adninistered to both the CAI students and conventional students. These examinations covered the materials in lessons 1-6, 7-15, and 16-23. The score and relative rank of each student on each examination is available for inspection in Tables 2l-23 of Appendix C. In addition, the cumulative querage over tinree examinations is given in Table 24 of Appendix C. The individual performances of the members of CAI-2 and the group average: are shown in Table 11. The average for CAI-1 was lower than the average for C as might be expected since CAI-1 had a much lower average mh and gp. The consistently high performance of student 37 explains the increase in CAI-2 over CAI-1. The average score for CAI-2 was still below that of C, but the substantially higher gp for C may account tor this difference in score. One vexy noticeable point was the uniform decline from their course average for the members of CAI-I on the third examination. Later remarks may help to explain this decline.

The examination of the final average performances would be of interest in determining the actual importance of when ge. Working with the data fron Tables 9 and 10 and using the individual course averages from Tabia 24 as the performance (P), the following correlation

Table 11. Examination Scores for Various Groups

Group	Exam 1	Exam 2	Exam 3	Average
(34)	38	64	42	48
(35)	68	70	34	57
(36)	56	54	47	52
$(37\}$	92	93	87	91
CAI-1	54	63	41	53
CAI-2	64	70	53	62
C	67	67	67	67

The indicat, on here is that gp was an important predictor of performance in both C and CAI-2 while mh did not appear important in C. The mh effect on the performance of CAI-2 registered astoundingly high. However, the relative importance of $g p$ and $m h$ in CAI-2 is concealed by $r_{g p \times \operatorname{mh}}(C A I-2)=.81$ as reported in the previous section.

In order to look more closely at the effects of $m h$ and gp on the final performance, the linear regression equation

$$
\hat{P}=.1765 \mathrm{mh}+14.42 \mathrm{gp}-7.181
$$

was computed from the mh , gp , and performance data P for the conventional students C. The standard deviation from regression is 11.8 and the correlation between P and \widehat{P} is.64. The $m h$ and gp for the various CAI groups in Tabie 11 were extracted from Tables 8, 9, and 10 in order to predict the expected periormance \hat{F} of the CAI students if they had attended the conventional class. These results appear in Table 12. Student 34 performed well below his predicted value, but within one
standard deviation. Student 35 performed about as predicted. Student 36 performed better than his predicted value, kut within one standard deviation. Student 37 performed more than one standard deviation above his predicted value. Taken collectively, CAI-1 and CAI-2 performed approximately as predicted by the regression equation for C.

Considering each of the twenty-five items on the examinations in Appendix C, CAI-1 scored better than C on seven items and CAI-2 scored better than C on twelve items with one tie. The relative difference between each of the item scores for CAI-2 and C was computed by dividing the absolute difference by the total possible points. This relative difference exceeded . 2 for eight items with six in favor of C and two in favor of CAI-2. These items and corresponding scores for CAI-1, CAI-2, and C are given in Table 13. The table indicates that the CAI-1 group had difficulty with some of the theory and a high score by student 37 was not enough to keep the relative difference less than .2. This is not unexpected, considering the lower gp and mh of CAI-1.

Table 12. Predicted and Actual Performance of the CAI Students

Group	Ave mh	Ave_g	\hat{P}	$\frac{P}{P}$	$\underset{P}{\text { P- } \hat{P}}$
$\{34\}$	13	4.4	58.56	48.00	-10.56
$\{35\}$	14	4.4	58.73	57.33	-1.40
$\{36\}$	14	3.6	47.20	52.33	+5.13
$\{37\}$	40	5.2	74.86	90.67	+15.81
CAI-1	13.7	4.1	54.36	52.56	-1.80
CAI-2	20.5	4.4	59.89	52.08	+2.19

Table 13. Exam Items with Large Group Differences

Exam	Item	CAI-1 Ave	CAI-2 Ave	C Ave	Total Possible	Major Purpose of Problem	
	2 b	3.3	4.8	7.9	10		Apply Theory

Since neither CAI-1 nor CAI-2 appeared to be a good representation of C, it seemed likeiy that comparisons with subsets of C would yield more information. For each CAI student, subsets of C were formed to collect those students who had similar $m h$ and/or gp characteristics. An average oi each subset was then computed to form the average individual C-representatives for each CAI student. Depending on the mh or gp tolerance allowed, each student could heve numerous C-representatives. Selected C-represencatives for a, given mh and gp tolerance were then averaged over tire CAI students to form the average group C-representative to be compared with the SAI-1 group and the CAI-2 group.

Denote $G P_{k}(N)$ as the subset of all students in C which differ from N in CAI-2 by at most . Ik gradepoints. For example, from Table 10, it follows that $g p_{1}(35)=\{3,17,20,30,33\}$ is the set of all students in C who differ from \{35\} by at most . 1 gradepoints. In a similai manner, denote $m h_{k}(N)$ as the set of ail students in C who differ from N in CAI-2 by at
most k mathematics hours. Thus, Prom Table 9, $\operatorname{mh}_{3}(35)=\{3,4,6,7,8,9,15$, $16,18,19,22,26,28,30$) is the set of all students in C who differ from (35) by at most three mathematics hours. Intersections of subsets were formed to control both mathematics hours and gradepoint, e.g. $\mathrm{gP}_{\mathrm{g}}(35) \mathrm{nmh}_{3}(35)=\{3,30\}$.

For each N in CAI- $2=\{34,35,36,37\}$, the following twelve subsets of C were formed: $\mathrm{gP}_{\mathrm{k}}(\mathrm{N})$ for $\mathrm{k}=0,1,2,3, \mathrm{mh}_{\mathrm{k}}(\mathrm{N})$ for $\mathrm{k}=0,1,2,3, \mathrm{EP}_{\mathrm{k}}(\mathrm{N}) \mathrm{rma}_{3}$ (N) for $k=1,2,3$, and $\mathrm{gp}_{3}(\mathrm{~N}) \cap_{\operatorname{mh}}^{2}(\mathrm{~N})$. Since C is finite, twenty-five of the forty-eight total subsets consist of only one student from C while both $\mathrm{BP}_{1}(37) \mathrm{muh}_{3}(37)$ and $\mathrm{gp}_{2}(37) \mathrm{man}_{3}(37)$ are empty. For the forty-six nonempty sets, the average $g p$ and $m h$ were computed to form the characteristics of the C-representatives for each CAI student. The examination scores wert also averaged to form the performance data of the C-representatives. In this manner, each CAI-1 student has twelve individual C-representatives characterized by $\mathrm{gP}_{\mathrm{O}}, \mathrm{gP}_{1}, \mathrm{gP}_{2}, \mathrm{BP}_{3}, \mathrm{mh}_{0}, \mathrm{mh}_{1}, \mathrm{mh}_{2}$, $\mathrm{mh}_{3}, \mathrm{gp}_{1} \mathrm{nmh}_{3}, \mathrm{gp}_{2} \mathrm{nmh}_{3}, \mathrm{gP}_{3} \mathrm{nmh}_{3}$, and $\mathrm{gp}_{3} \mathrm{nmh}_{2}$. For example, gP_{1} (35) is a C-representative of student 35 with average gp=4.4, average mh=19, average exam 1 score $=59$, average exam 2 score= 55 , average exam 3 score $=$ 57, and course average $=(59+55+57) / 3=57$. Student 37 has only ten individual C-representatives because of two empty intersections. To form the group C-representatives of CAI-1 and CAI-2, the individual Crepresentative information was averaged over $\mathrm{N}=34,35,36$ and $\mathrm{N}=34,35$, 36, 37, respectively. The results appear in T is 14 and 15 . For example, the mh average of gp_{3} (CAI-1) in Table 14 was computed as 17.4 by summing the mh averages of $\mathrm{gp}_{3}(34), \mathrm{gp}_{3}(35)$, and $\mathrm{gp}_{3}(36)$ and dividing the total by three. Similar computations were performed for the gp and examination scores.

Table 14 shows twelve group C-representations to be compared wjith CAI-l. For each representative in Table 14, the number of students is actually the number of contributing students from the corresponding C representatives for the members of CAI-1. Duplicate students were not courited, For example, there were five students contributing to mh_{2} (CAI-1) since $\mathrm{mh}_{2}(34)=\{3,9,16\}$ and $\mathrm{mh}_{2}(35)=\mathrm{mh}_{2}(36)=\{8,22,3,9,16\}$. Six conventional students $1,2,5,10,24$, and 32 , did not affect the figures in Table 14. Similarly, Table 15 shows the data for the ten group Crepresentations formed by averaging the respective individual Crepresentative daita for studerits 34, 35, 36, and 37. Three conventional students 2, 24, and 32, did not affect the figures in Table 15. As previously mentioned, students 13, 14, and 29 were excluied from both tables.

An inspection of Table 14 reveals several trends. First, the previously mentioned uniform decline of CAI-1 on examination three was paralleled only by a decline from the course average in the $\mathrm{mh}_{0}, \mathrm{mh}_{1}$, and mh_{2} representatives. The other representatives showed no large decline. The indication is that students with a weak background in mathematics scored below their course average on the theoretical materials covering numerical differentiation and integration and differential equations. Controlling only the gp, there is a maximum difference in P of seven points between CAI-1 and the corresponding C-representatives, the edge going to the conventional students. The C-representatives aiso record a stronger mh background, the difference ranging from 2.3 to 3.7. The maximum difference occurs at the go_{3} level where the C-representative has 3.7 more math hours and a slightly higher gradepoint. The major effect appears to be the gradepoint which is in keeping with the value

Table 14. Comparison of CAI-1 with Approximate Representatives in C.

Group	No. of Students	$\begin{array}{r} \mathrm{mh} \\ \text { Ave } \\ \hline \end{array}$	$\begin{gathered} g 口 \\ \text { Ave } \\ \hline \end{gathered}$	Exam 1 Ave	Exam 2 Ave	Exam 3 Ave	Course Ave (P)	$\underset{\hat{S}}{\text { Predicted }}$
CAI-1	3	13.7	4.1	54	63	41	53	54
SP_{0}	2	16.0	4.1	56	53	60	56	55
EP_{1}	6	16.7	4.2	55	61	54	57	56
EP_{2}	8	17.0	4.1	55	61	52	56	55
EP_{3}	12	17.4	4.2	59	67	55	60	56
mh^{3}	2	13.7	4.7	57	65	50	57	63
mh ${ }_{1}$	3	13.3	4.6	62	66	40	59	62
mh^{2}	5	13.8	4.6	63	72	55	63	62
mh ${ }^{2}$	14	15.4	4.9	64	68	63	65	66
$\mathrm{EPP}_{1} \mathrm{ninn}_{3}$	3	13.8	4.2	49	68	54	57	56
$\mathrm{SP}_{2} \mathrm{mimh}_{3}$	3	13.8	4.2	49	68	54	57	56
$\mathrm{SP}_{3} \mathrm{nmh}^{2}$	2	13.3	4.2	45	70	52	56	56
$\mathrm{BP}_{3} \mathrm{nmin}_{3}^{2}$	3	13.8	4.2	49	68	54	57	56

Table 15. Comparison of CAI-2 with Approximate Representatives in C.

Group	No. of Students	$\begin{gathered} \mathrm{mh} \\ \text { Ave } \end{gathered}$	$\begin{gathered} \text { gp } \\ \text { Ave } \\ \hline \end{gathered}$	Exam 1 Ave	Exam 2 Ave	$\begin{gathered} \text { Exam } 3 \\ \text { Ave } \end{gathered}$	Course Ave (P)	$\begin{gathered} \text { Predicted } \\ \hat{\mathbf{p}} \end{gathered}$
CAI-2	4	20.2	4.4	64	70	53	62	60
EPO_{0}	3	16.3	4.4	58	56	66	60	60
gp_{1}	11	17.0	4.4	58	64	61	61	60
cos^{1}	15	17.0	4.4	59	64	57	60	60
gP_{3}	23	17.6	4.5	62	69	60	64	61
mh^{0}	3	20.3	4.0	65	69	62	65	67
mh	4	20.0	4%	69	69	61	66	66
$\mathrm{mh}^{\mathbf{1}}$	6	20.4	4.8	70	74	66	70	67
$\operatorname{mh}_{3}^{2}$	15	21.6	5.0	71	71	71	71	69
$\cos _{\mathrm{m}_{1} n_{\mathrm{mbn}}^{3}}$	----	-	--	--	--	1	7	6
$\operatorname{sp}_{2} n_{\operatorname{mn}}^{3} 3$	--	--	---	--	--	--	--	--
$\mathrm{CP}_{3} \mathrm{nmh}_{2}$	3	20.0	4.5	56	72	64	64	61
$\mathrm{SO}_{3} \mathrm{n}_{\text {mh }}{ }^{2}$	4	20.4	4.5	59	71	65	65	61
${ }^{3} \mathrm{C}$	30	19.0	4.9	67	67	67	67	67

$\hat{\mathbf{P}}$ from the regression equation and previously reported correlations. Controlling only the mh , the gp of the C-representation rises to 4.9 as compared to 4.1 for CAI-1. The result is a sizable difference in scores as expected. Controlling both the $g p$ and mh , the difference does not exceed four points.

Table 15 reveals some of these same trends. By controlling only the gp, the difference in scores never exceeds two points. By controlling only the mh , larger differences are detected, but this attributed to a significant increase in the gp for the C-regresentatives. By controlling both the mh and εp, the difference does not exceed three points with the edge going to the conventional students.

Inspection of Tables 9 and 10 shows that students 10 and 37 were the only two who ranked exceptionally high in both mathematics hours and gradepoint. Table 16 shows the comparison of CAI student 37 with student 10 and also with the class of all conventional graiuate students $G=\{8,10\}$. No striking differences appear in the performances, and the indication is that graduste students performed very well by either method of instruction.

Table 16. Performance at the Graduate Level

Student	mh Ave	Sp Ave	Exam 1 Ave	Exam 2 Ave	Exam 3 Ave	Course Ave (P)	Predijcted P
8	16	5.3	89	92	86	89	72
10	40	5.5	89	80	98	89	79
$\{8,10\}$	28	5.4	89	86	92	89	76
37	40	5.2	92	93	87	91	75

Although the danger in dealing with small groups of students is realized, the results of the initial experinent indicate that CAI students and conventional students with equal mhand gperformed equally well on examinations.

Observations of the Proctor

During the course of the experiment, the author conducted casual discussions with each CAI student. Some items of interest are noted in this section and may be pertinent in explaining the performance of the CAI students. Judgements concerning the overall motivation of a student were based on observed fluctuations in enthusiasm (egpecially during periods of excessive hardware failur) and in persistence in learning the concepts (especially during lessons involving difficult subject matter).

Student 34 had noticeable difficulty with the level of the course material. This was further complicated by continual machine failures and the srudent tended to hurry through the lessons. The student realized his difficulties and, at times, repeated sections of the tutorial mode in order to gain a better grasp of the concepts. This student worked about half of the problems in the problem modes and then hurried to the next lesson. The investigation modes were seldom used. The student had extra-curricular activities which interfered with all of his studies. In particular, he stated that he did not have time to study at all. for the firist examination. His motivation seemed to be average and remained constant throughout the experiment.

Student 35 found the course material to be challenging, but experienced some serious difficulties in the last eignt lessons. He methodically went through the tutorial modes, but he easily gave up when the questions seemed difficult. He learned to put in successive garbage answers when tise material was very difficult in order to extract the correct answer from the system. He worked all problems in
the problem modes but almost never tried the investigation modes. His overall motivation seemed to be about average but tended to fluctuate with the difficulty of the Iessona.

Student 36 found the course to be extremely difficult, but was persistent in his attempts to learn the material. He worked ali problems in the problem nodes and most suggested problems in the investigation modes. His rate of progress was slow and he of wan came in during evening hours to do additional work. He realized his weak mathematical background, but aitempted to offset this with a high motivation to improve. His motivation, however, fluctuated with the number of hardware fallures.

Student 37 had no observable problems. He seemed to work through the tutorial and problem modes with a scientific curiosity. He tried some of his own problems in selected investigation modes. Highly motivated, he found some sections challenging and others easy, but never found the material too difficult.

From general observations and a study of the strdent records, the following conclusions are tentatively offered:

1. The student operates at a higher efficiency over three two-hour blocks of CAI than over two three-hour blocks.
2. Machine failures are highly disruptive and deter learning.
3. The intrinsic motivation of a CAI student may be the major factor in determining the difference between expected and actual performance.
4. Considering the uniform decline of the CAI-1 students on the last examination, several effects may be present. As
previously mentioned, tine C-representatives of CAI-I based on m_{0}, mh_{1}, and mh_{2} also showed a decline. It is possible that a stronger mathematics background is needed to master the course material in lessons 18-23. Since this was the latter portion of the course, it is also possible that an early Hawthorne effect was beginning to disappear. Not to be discounted is the possibility that lessons 18-23 are poorly designed and/or the material is of sufficient theoretical depth to warrant other approaches to teaching the materiai. The author did experience difficulty in designing instructional sequences for long and involved theoreticai developments. Student participation was difficult to envision and, at times, even seemed unnatural.

Additional study is needed to substantiate or repudiate all of these claims.

Results of the Questionnaire

The forty-five item questionnaire displayed in Appendix C was designed to determine the student's reaction to various flatures of the system. The items on the questionnaire were categorized as follows:

1. Determine the student's reaction to the program structure of the tutorial, problem, and investigation modes--items 2-7, 13, 15, 17-18, 20, 22-24, 27-33, 35-37, and 39.
2. Determine the hardware restrictions of the teletype terminal-items 8, 10-12, 16, 19, and 40.
3. Determine miscellaneous reactions--items 1, 9, 14, 21, 25-26, 34, 38, and 41-45.

The results of the questionnaire were more or iess interpreted in terms of ideal conditions. A distribution of responses is given in Table 17. The weights -, 0 , and + are to be interpreted in the following manner: + means that all students responded favorably to CAI. 0 means that all students took a neutral stand. (0 or +) means that at least one student responded favorably, at least one took a neutral stand, and no students took a negative stand.

A similar interpretation is placed on - and (- or 0) where negative means an unfavorable response to CAI. Questionable items are those which could not be interpreted because either some students responaed Pavorably while others responded negatively or the item has no + or interpretation. The individual responses of each student to each item is presented in Table 20 of Appendix C. The discussion here is concerned with responses which have questionable interpretation or are negatively oriented.

The author interpreted the respcnses to items 30 and 45 as negatively orientel. Three students responded with a 15-30 minute estimate of preparation time for the tutorial mode. Although this may be typical of most students, more time is needed to complete most of the outside reading assignments. Student 34 reported an average of 30-45 minutes for preparation. In general, the students relied heavily on the tutorial mode for an extensive exposure to the course material and did not digest the outside reading prior to the tytorial mode. The students generally agreed that the investigation mode did not provide an outlet for solving their own problems. However, only two students made any serious attempt to use the investigation modes and
only one student made extensive use of them. It would appear that a deeper rooted problem exists. Possibly the students did not have extra time or they were not motivated to define their own problems.

Table 17. Distribution of Responses on the Questionnaire

Item Type		- or 0	0	0 or +	+	3
Program	30	None	None	3,13,23,31,35	$\begin{gathered} 2,4,17,24,27, \\ 29,32,33,36, \\ 39 \end{gathered}$	$\begin{aligned} & 5,6,7,15,18 \\ & 20,22,28,37 \end{aligned}$
Hiwre.	None	None	None	None	8,11	10,12,16,19
Misc.	None	45	None	21,34,42	9,14,25,41	$\begin{gathered} 1,26,38,40 \\ 43,44 \end{gathered}$
Totals	1	1	0	8	16	19

The responses to nineteen items had a questionable interpretation. Some of the items were desigmed to extract information. On others, the students were not in general agreement. In attempting to determine the most useful of the three instructional modes in items 5-7, the opinions were divided. Three students voted to retain the tutorial mode but drop the investigation mode if necessary. However, two of these three students seldom used the investigation mode. Student 36 believed the problem and investigation modes to be the most useful. Of the four students, however, student 36 was the only one to extensively use the investigation mode. There were differing opinions on the difficulty of the linear notation imposed by the teletype terminal and distractions of a noisy typing mechanism. One student felt that he had to concentrate on avoiding syntax errors when typing responses. Two students said that the linear notation made the material more difficult to read and one felt that this difficulty was intensified in the last eight lessons on
difforentiation, integration, and differential equations. One student secmei bothered by the noise of the typing mechandem.

Specific items regarding course effectiveness resulted in gome variation in opinion. Two students felt that half the time viney could mave gained more from the conventional classroom. It is interesting to note that the pormance of both of these students were well above the level. predicted by the regression equation in Table 12. Three students agreed that deviations from the textbook made the material more difficult winile Student 37 hai no difficulty. The tutorial modes seldom clarified the outside reading essignments for Student 36. Student 37 found himsel.f trying to get through the material rather than learning it. This aame student said he did not need graphic displays to help him understand the material. Since this student scored high on all examinations, the implication is that he understood the material prior to working through the tutorial mode and that he had very little to gain from CAI. On occasions, he guessed at the answer. The other three students seldom guessed and felt that a graphic display would have helped. Students were divided on a self-evaluation of their own knowledge and their relative performance on examinations.

The Rconomics of CAI

In terms of author-programmer preparation tive, close to one hundred man hours were required to design and implement a lesson and complete the associated tasks. These figures were derived by keaping approximate records of the man hour expenditures for Lessons B and 13-23. Averaging the time over twelve lessons, the following breakdown is reported:

1. initial design (17 hours)
--specification of lesson objectives
--specification of aubtopics and order of presentation
--design of examples and exercises
--apecification of format and design of problems for the problem mode and investigation mode
2. coding (24 hours)
3. progran checkout (27 hovis)
--data preparation
--debugging by batch procesaing
--debugging by final teletype muns
--initial revision of the material
4. administratio of trisi experiment with the lesson (3 houra)
--proctor the experiment
--correct exrors
5. documentation (3 hours)
--creation of appropriate pagez for the Student Manual
--creation of the lesson on magnetic tape
6. 20% estimate overhead (19 hours)
--consultation
--preparation of quastionnaire and examinations --correction of errors after the Fall, 1969, experiment -unaccounted for metivithes

Throughout the experiment, PICLS mantained a recond of the atudent toruinal time, the central procensor time, the poripheral processor time, and the total number of atudent reaponses. These figurea were
accumulated and averaged over the number of participating students and are presented in Table 18. Some records were lost due to machine failure and the average reflects usage for only those students for whom records were available. Thus, the average figures are based only on available information. In those cases where records were lost for all students, the corresponding items are so labelled. If a student failed to use an investigation mode, a zero time was recorded for him. Since the investigation modes were not used by some students, a low average figure appears in most entries of the investigation mode columns. In order to determine the average requirements for a lesson, figures for the three modes were accumulated column-wise and divided by the number of numerical entries in each column. The final averages show that the typical student spent seventy-eight minutes in a tutorial mode, requiring 22.87 seconds of central processor time and 80.94 seconds of peripheral processor time. During this time, the student responded seventy-five times or about once every minute. It should be noted that a response is recorded for each depression of the Return key. Depending on the area of activity, this may or may not imply an actual constructed answer. It does, however, imply that the computer had to service the request from the terminal and that PICLS had to retrieve and process program statements from a disk file.

Elased on the current Purdue charges of $\$ 275$ for each hour of central processing time and $\$ 55$ for each hour of peripheral processor time, the average computing cost for the typical tutorial mode was (275(22.87)+ 55(80.94))/3600 or \$2.98. Additional calculations appear in Table 19. The prices quoted above are for internal projects. At commercial rates, the costs would be approximately doubled.
Table 18. Average Student and Computer Time Requirements*

Investigation Mode

(does not exist) (cambined prob-inv)		
$1 /$		
oes not ex		
1		
25/ 55.50/106.62/61		
(combined prob-inv) (combined prob-inv)		
0.00/ 0		
9.93/ 29.44/		
/ 5.76/ 15.151		
6/ 5.06/ 9.88/		
7/ 48.34/ 56.85/		

Table 19. Jomputing Costs for CAI

	Cost for Average Use	Adjusted to 60 Minutes	Adjusted to 50 Minutes	
Tutorial Mode	2.98		2.29	1.91
Problem Mode	6.77		10.69	8.91
Investigation Mode	1.36	10.20	8.50	
All Modes	11.11	5.38	4.48	

Table 19 shows that the problem-solving features of the problem and investigation modes come at a high premium. In these modes, arithmetic instructions are abundant and entire blocks of instructions may be executed for a single response in order to provide the student with computational results. In terms of central processing time, an Enterpretive system heavily penalizes the appification of computational mathematics. A direct comparison of the problem and investigaiion modes with the conventional student's use of the computer for homework assignments was not possible since the conventional students were not required to program all of the numerical methods. Assuming equal effectiveness of the problem-solving facilities of the CAI system and the conventional method of programming, one must eventually determine if the eliminetion of student programming and debugging in CAI systems is worth the difference in cost.

The basic figure for comparison is $\$ 2.98$ since the tutorial mode is the portion of the CAI program which was designed es a parallel to the conventional classroom. It should be emphasized that this dollar figure will vary among installations depending on the computer charess needed to run a nonprofit shop. It does, however, appear that an interactive CAI system on a computer which is saturated with background
jobs yields a cost which is not totally unreasonable. The $\$ 2.98$ for seventy-eight minutes of student terminal time is adjusted in Table 19 to fifty and sixty minutes to provide a better feel for its magnitude. These figures, however, do not include the charges for the terminal and telephone lines. Using $\$ 66.00 / m o n t h$ rental for the terminal, $\$ 2.00 /$ month for the line charges, and estimating two hundred usable terminal. hours each montin, the hourly cost is $\$.34$ and the total hardware cost becomes $\$ 2.63 /$ hour. This figure does not include course developmental costs and proctoring costs.

Using the student time and hourly cost, certain ratios were computed. In the following computations, only twenty-four CAI lessons were assumed. Lesson A Was eliminated from consideration since it teaches the use of the CAI system and the material is not included in the conventional classroom. Its overall effect diminishes as the number of CAI lessons increase. Denote

$$
\begin{aligned}
T_{c a 1}= & \text { student terminal time required for twenty-four tutorial } \\
& \text { modes }=(78)(24)=1872 \text { minutes }=31.2 \text { hours }
\end{aligned}
$$

$T_{c}=s t u d e n t$ classroom time used to cover the equivalent material (twenty-nine fifty-minute lectures) $=(50)(29)=1450$ minutes $=24.17$ hours .

The ratio of student time is $\mathrm{R}_{1}=T_{c a i} / T_{c}=1.29$ which means that CAI required about 30% more student time. Based on student time and equal performance $\mathrm{P}_{\mathrm{P}} \mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\text {cai }}$, the time effectiveness ratio is given by

$$
E_{1}=\left(P_{c a i} / T_{c a i}\right) /\left(P_{c} / T_{c}\right)=1 / R_{1}=.77
$$

which means that CAI was about three-fourths as efficient as the conventional method. Denote
$0_{\text {cai }}=$ other costs/hour attributed to developing the CAI course and proctoring students
$C_{c a i}=$ total hourly costs for CAI $=2.63+0_{\text {cai }}$
$C_{c}=$ cost of teaching one conventional student for one hour The Purdue figure for C_{c} was not available but Kopstein and Seidel [23] estimate the 1970-71 national average to be $\$ 1.40$ for higher education. This estimate is based on cost data prior to 1965 and on a steady annual fincrement of about 10\%. The figure for $C_{c a i}$ cannut be computed since ${ }^{0}$ cai is not known, but the hardware cost alone will exceed the allowakle break even point. The ratio of total instruction cost was $R_{2}=R_{1}\left(2.63+0_{c a i}\right) / 1.40=2.42+(.92) 0_{\text {cai. }}$. Based on equal performance, the cost effectiveness ratio is $E_{2}=\left(1 / R_{2}\right)<.42$. The cost of CAI was more than 2.4 times the cost of the conventional method and less than 42% as efficient.

In terms of economica, the conventional method of instruction had a clear cut advantage. However, the total hardware costs can be significantly reduced by designing on instructional system with concentration on efficiency of operation. Central processor time can be significantly reduced by avoiảing an intexpretive mode of execution. Peripheral processor time can be reduced by avoiding excessive accesses of peripheral storage. In the future, a major effort will be needed to find ways to reduce $0_{c a i}$, particularly the developmental costs.

CHAPTER V
GENERAL FINDINGS AND RECOMMENDATIONS

Specific details have already been presented in the concluding remarks of Chapters II and III and in the various sections of Chapter IV. In this section, an overall summary of the findings is presented along with some recommendations for extending the research. The following points summarize the major findings of this investigation:

1. The feasibility of using CAI for a major portion of the course material has been tentatively established by constructing the program and observing that the average student's terminal behavior on examinations is about the same as representative conventional students. Although the author's manner of presentation might be questioned, the level of difficulty parallels that of the conventional classroom.
2. General difficulty was experienced by the author in designing instruction for the involved theoretical portions of the course dealing with the derivation of numerical methods. In these areas, it was difficult to provide for detailed and meaningful student participation and, at the same time, restrict the instruction to a time period which is reasonably comparable to that of conventional presentation. Successíul approaches depend on the ingenuity, experience, and dedication of the instructor. The mathematical maturity of the student seems to
have a significant bearing on the success of the instruction. The student's participation is further hampered by the restricted base of communication which was implemented in the system.
3. The problem-solving aspects, such as exercises, examples, and problems appear nstural in this method of instruction.
4. The approximation method described in Chapter II for determining equivalence of expressions was totally successful for ehis application. It provides the student with a great deal of flexibility in constructing responses within the ayntax of the language. The author considers such flexibility to be an important element in the success of CAI in mathematics. It relaxes the restrictions on communication and allows the student to concentrate on concepts. Since it appears externally as an underlying intelligence, the student has confidence in its power to distinguish between correct and incorrect responses. The syntax of the language was limited in this development and recomendations for extensions are detailed in Chapters II and III. A restricted syntax also limits the author's Ilexibility in designing instructional materials.
5. Although teletype terminals were used in this development, they imposed restrictions on both the author and the student. In some cases, a graphic display is needed to describe the geometry ' a numerical method. Even though the students were $^{\text {a }}$ of a divided opinion on the effects of a linear notation, the author is of the opinion that it is awkward and difficult to
read. Using a natural notation on a CRT display probably would not solve the problems of entering expressions through a keyboard. In particular, the governing rules for forming nested superscripts and subscripts might be complicated.
6. Stability .if the hardware-software complex is essential in any production effort. System failures are disappointing to the students. They disrupt the student's concentration and waste his tinie: In the experiment reported in this paper, it is not known how systems failures may have affected the performance on examinations. Repeated failures in a large scale production effort could have a negative social reaction. Backup systems may be necessary.
7. The design and deveicpment of instructional material have some inherent problems. A massive effort in terms of authorprogrammer time is needed to produce a single-tiack linear program. This is particularly true in computational mathematics where the definition of variables and assignment of numerical values to variables require a sizable number of supporting arithmetic statements which produce no teletype output. A large number of statements is needed to provide processing support for a single constructed mathematical response. This is true even though an expression may be checked by a single call to the program described in Chapter II. Figure 2 and associated program examples in Chapter III demonstrate this large requirement. Because of these requirements, the overall development failed to accomplish the secondary objectives of
implementing examinations for student evaluation and implementing remedial tracks. Future large-scale developments should be conducted by teams of individuals, representing specialists in instructional deign and specialists in subject matter content. Prior to implementation, the project should be reviewed by several institutions in order to gain wide scale acceptance and avoid immediate obsolescence.
8. The problem and investigation modes provide the student with facilities for rapidly solving computational problems. In this respect, the author's approach is considered successful. As pointed out in Chapter III, a revision of the strategy in some of the problem modes may be necessary to provide more challenge to the student. Partial precision and computer-generated problems appear to be useful features in computational mathematics but a careful study has not been conducted. These features place heavier demands on the central processor and the cost of instruction rises.
9. The operational costs for CAI are higher than conventional costs but they are not compcetely out of range. A carefully designed system could conceivably reduce the computing power costs of the tutorial mode to the cost of the conventional classroom. A major effort is needed to find ways to reduce the developmental costs.
10. A detailed inspection of student scores indicetes that CAI students and converitional students with similar mathematics background and mathsmatics gradepoint will, on the average,
perform equally well.
11. The general student reaction to CAI is positive. It should be emphasized that conclusions 9-11 are based on a small sample of student histories, examination scores, and the results of a questionnaire. Because the sample was small and because the experiment was plagued with operational problems, the results have to w. considered tentative.

The results of the initial experiment opens the way for follow-up experiments oi a varying nature. First, several experiments waich involve a wide range of students should be conducted to verify the initial results and stabilize the cost estimates. Some experiments should be conducted without the problem and investigation modes. The CAI students would have problem assignments identical to those of the convertional class. In this way, the value of the stand-alone tutorial mode and the effects of the problem mode can be determined. Finally, the tutorial modes should be reconstructed to contain extensive remedial work, examinations, and multiple tracks of instruction. Wherever appropriate, the problem modes shouid be revised in the manner described at the end of Chapter III. The communication features should be expandert in the manner described in Chapters II and III. All useful experiments conducted up to that point should then be repeated on the extended system.

Of a scmewhat different nature, several areas of investigation begin to stem from the current system. The existing course may be supplemented by a graphic display controlled partially by the student and partially by the program. As the student progresses through the material, the program can maintain carefully labelled diagrams or
graphs which are pertinent to the discussion. The student may request graphs of his own functions. Hopefully, this would offset some disadvantages of a teletype terminal and lead to deeper understanding of the concepts. Another possibility might be to integrate the current system with the convcitional classroom under the control of a instructional management system. Various possibilities can be investigated.

From a broader point of view, the results of research in other areas are needed to create a sophisticated instructional system. A CAI system should have information retrieval capabilities where a student can ask questions and obtain meaningful information. Ideally, the student should be able to communicate in some reasonable subset of a natural language. Character recognition is needed for handwritten communication and speech synthesis for verbal communication. In mathematical systems, the various algorithms of formula manipulation such as symbolic differentıation and integration can be usefully employed. Some standard procedures are desperately needed for distinguishing between conceptual errors and algebraic errors. If these features are combined with advances in learning theory and teaching techniques, we will have some basic tools for building an instructional system.

LIST OF REFERENCES

LIST OF REFERENCES

1. Avner, R. A. and Tenczor, P., The Tutor Manual, CERL Report X-4, Computer-Based Education Research Laboratory, University of IIlinois, January, 1969.
2. Balough, R. L., Computex-Assisted Instruction, N68-13897, Clearinghouse for Scientific and Technical Information, U. S. Department of Commerce, January, 1968.
3. Bochner, S. and Martin, W. T., Several Complex Variables, Princeton University Press, 1948.
4. Bunderson, C. V. and Gerry, R., Preparing Educational Material for Computer-Assisted Instruction (mimeographed report), ComputerAssisted Instruction Laboratory, University of Texas, February, 196'7.
5. Bunderson, C. V., Dunham, J. L. and Jennings, E., The Role of Computer-Assisted Instruction in University Education, Laboratory for Computer-Assisted Instruction, University of Texas, October, 1967.
6. Caviress, B. F., On Canonical Forms and Simplification (doctoral dissertation), Carnegie-Mellon University, May, 1968.
7. Charp, S. and Wye, R. E., Computer-Assisted Instruction in a Large School System, Journal of Educational Data Processing, Vol. 6, No. 1, 1968-69, pp. 28-39.
8. Childs, J. W., A Set of Procedures for the Planning of Instruction, Educational Technology, Vol. VIII, No. 16, 1968, pp. 7-14.
9. Conte, S. D., Enamentary Numerical Analysis, McGraw-Hill, Inc., New York, 1965.
10. Entelek Corporation, Computer-Assisted Instruction Guide, Entelek Corporation, Newburypart, Massachusetts, 1968.
11. Fein, L., Thoughts on Computer-Based Instruction, Journal of Educational Data Processing, Vol. 4, No. 4, 1967, pp. 248-253.
12. Feingold, S. L. and Frye, C. H., User's Guide to PLANIT, TM3055/000/01, System Development Corporation, October, 1966.
13. Felöhusen, J. F. and Szabo, M., A Review of Developments in Com-puter-Assisted Instruction, Educational Technology, Vol. IX, No. 9, 1969, pp. 32-39.
14. Feldhusen, J. F. and Szabo, M., The Advent of the Educational Heart Transplant, Computer-Assisted Instruction: A Brief Review of Research, Contemporary Education, Vol. XI, No. 5, April, 1969, pI. 265-274.
15. Feurzeig, W. and Bobrow, D. C., MENTOR, A Gcumputer Language for Programmed Discourse (mimeographed report), Bolt, Beranek, and Newman, Inc., 1965.
16. Frce, C. H., CAI Languages: Capabilities and Applications, Datamation, September, 1968, pp. 34-37.
17. Gear, C. W., Computer Organization and Programming, McGraw-Hill, Inc., 1969.
18. Gunning, R. C. and Rossi, H., Analytic Functions of Several Compiex Variabies, Prentice-Hall, Inc. 1965.
19. Hansen, D. N. and Dick, W., Semiannusi Progress Report, Report No. 5, Computer-Assisted Instruction Center, Institute of Human Learning, Florida State University, July, 1967.
20. Hickey, A. E. (ed.), Computer-Assisted Instruction: A Survey of the Literature, Entelek Corporation, Newburyport, Massachusetts, 1968.
21. IBM Corporation, The IBM 1500 Instructional System and Coursewriter II, IBM Corporation, Gaitherciurg, Maryland.
22. Kindred, J., Computer Augmented Learning, AD 645 121, Defense Documentation Center, U. S. Depariment of Commerce, November, 1966.
23. Kopstein, F. F. and Seidel, R. J., Computer-Administered Instruction vs. Traditionally Administered Instruction: Economics, Professional Paper 31-67, Human Resources Öfflce, George Washington University, June, 1967.
24. Korfhage, R., Hochgesang, G., Oldehoeft, A., and Mitzel, M., PICLS, (Purdue Instructional and Computational Learning System), CSD TR 28, Purdue University, October, 1968.
25. Lyman, E. R., A Descriptive List of PLatO Programs, Report R-2g5, Coordinated Science Laboratory, University of Illinois, Revised July, 1967.
26. Mager, R. F., Preparing Instructional Objectives, Fearon Publishers, Palo Alto, California, 1962.
27. Manacher, G. K., A Content-Evaluating hode of Computer-Aided Instruction, Interactive Systems for Experimental Applied Mathematics, Academic Press, 1968, pp. 286-293.
28. Martin, W. A., Symbolic Mathematical Laboratory (doctoral dissertation), MAC-TR-36, Massachusetts Institute of Technology, January, 1967.
29. Mitzel, H. E., et al., The Development and Presentation of Four College Courses by Computer Teleprocessing, Pennsylvania Staite University, June 30, 1967.
30. Oettinger, A. and Marks, S., Educational Technology: New Myths and Old Realities, Harvard Educational Review, Vol. 38, No. 4, 1968, pp. 697-717.
31. Oldehoeft, A. E., Anelysis of Constructed Mathematical Responses by Numeric Tests for Equivalence, Proceedings of the ACM Conference, August, 1969, pp. 117-124.
32. Purdue University, MACE Operating System (mimeographed dccument), Computing Center, Purdue University, December, 1969.
33. RCA, Instructional 70: User's Guide to Instructional Language I, Instructional Systems Division, Radio Corporation of America, Palo Alto, California, December, 1967.
34. Snedecor, G. W., Statistical Msthods, The Iowa State University Press, 1946.
35. Stolurow, L. M. and Davis, D., Teaching Machines and Computer Based Systems, In Glaser, R. (ed.), Teaching Machines and Prow grammed Learning, II, Data and Directions, Department of AudioVisual Instruction of the National Education Association, Washington, D. C., 1965, pp. 162-212.
36. Suppes, P. S., Jerman, M. and Brian D., Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program, Academic Press, 1968.
37. Tawlor, E. F. (ed.), ELIZA, A Skimmable Report on the ELIZA Conversational Tutoring System, The Educational Research Center, Massachusetts Institute of Technology, March, 1968.
38. University of Califoraia, PILOT 1.5 (mimeographed report), Computer Center, University of California, San Francisco, California.
39. Wilson, E. C., The Knowledge Machine, The Record, Teachers College, Columioia University, Vol. 70, No. 2, 1968, pp. 109-119.

APPETDICES

APPENDIXA

STUDENT MANUAL FOR A
 COMPUIER-ASSISTED COURSE

IN
COMPUTATIONAL MATHHMATICS

Arthur E. Oldehoeft
July, 1969
Second Revision, January, 1970

Computer Sciences Department
Purdue University

Introduction

This manual is a study guide for twenty-five computer-assisted lessons in computational mathematics. The recommended procedure is to sequentially study Lessons $A, B, 1, \ldots, \ldots 3$.

Each lesson requires the completion of an outside reading assignment and a computer assignment which deals with the same material. The student may systematically complete each lesson by diligently following the study guides in this manual. General recommended practices are presented in the following paragraphs.

Reading Assignment

The assigned reading should be completed prior to tine computer assignment and will always be from the textbook Elementary Numerical Analysis by S. D. Conte. Both the reading assignment and the computer assignment require a prerequisite knowledge of differential and integral calculus and a minimal knowledge of the Fortran computer language. The reading assignment will always cite those materials which should be read prior to beginning the computer lesson.

Computer Assignment

A computer lesson is generally divided into three separate modes of instruction which are described below. A student may begin a particular mode by typing a designated "section name". The section names for each mode will always be ilsted in the computer assignment. By the time the student has completed Lessons A and B, he will be
aware of the significance of each mode of instruction. A computer lesson may be terminated at any point by typing \$LOCOFF. If the tutorial mode is terminated in this manner, the student may restart the lesson at a later time at approximately the same point by selecting an appropriate section name from the available list given in the Index at the back of this manual. Due to the manner in which the problem and investigation modes are constructed, the student may restart at the beginning of these modes with very little repetition.

Tutorial Mode
This mode is a pragrammed instruction presentation of the lesson material and covers all concepts needed for the problem and investigation modes. A variety of examples and exercises are presented to give the student a practical exposure to solving problems. The student is expected to complete the tutorial mode prior to beginning the problem and investigation modes.

Problem Mode
This mode of instruction requires the student to work several standard problems using the computational methou studied in the tutorial mode. Problems may be solved with a minimum of computational effort on the part of the student and no programming effort. Tie problems for each lesson will always be stated in the study guide in order to give the studen'c an opportunity to preanalyze the problem and set up the necessary equations prior to beginning the problem mode. The problem mode may be started any time after completion of the tutorial mode.

Investigation Mode

This mode is optional and the student may use it to solve problems of his own choice. Throughout the tutorial and problem modes, the student will hopefully tinink of variations of exercises and problems or new and unusual problems. Rapid solution is possible since programming is not required. The student may begin the investigation mode at any time after completion of the tutorial mode.

Student Performance

In each lesson, a simple statement of what is expected of the student on a closed book examination should dictate how much time the student spends in the problem and investigation modes.

Lesson A: Keyboard Orientation

Reading Assignment
Read the first three pages of this manual and the current study guide for Lesson A.

The purpose of this lesson is to familiarize the student with the teletype keyboard and with the sign-on procedure for accessing computerassisted materials. Upon seating yourself at the teletype, the computer will request the following information:

1. student identification numier
2. student password
3. command, section name

A unique student identification number and password is assigned to each student by the instructor. The computer will request this information as the official sign-on procedure. If you have not been assigned an identification number and password, contact your instructor. In order to begin a computer lesson, the student must supply a command and section name. The command will always be \$LISSON and the section name must be a legitimate entry specified in the Index of this manual.

As an example, suppose the student with identification number 547 and password AMZ wishes to take Lesson A. The following operations are performed:

1. The student seats himself at the teletype and waics for the message TYPE USER NUMBER:
2. The student types 547 .
3. The computer types TYPE PASS WORD.
4. The student types AMZ.
5. The computer types TYPE COMMAND.
6. The student types \$LESSOIT, LOIOI. .
7. The computer initiates Lesson A.

Computer Assigniment,
To begin the tutorial mode, use the section name LOLOL. There is no problem or investigation mode for this lesson.

Student Performance

Upon completion of this lesson, the student should be able to

1. sign on and oif without difficulty for all subsequent lessons;
2. type mathematical expressions;
3. correct typing errors; and
4. apply standard techniques to obtain first estimates of zeros of functions.

Lesson B: Computer Numbers and Computational Error

Reading Assignment

1. Read Conte, pp. 4-11.
2. Review the format for Fortran floating point numbers.

Computer Assignment
The following section names are needed:

1. iolll for the tutorial mode
2. LOPOL for the cambined problem-investigation mode

Statement of Problems in the Problem Mode. For each of the following projlems, the CDC 6500 will simulate a 4, 6, 8, or 15 digit computer. To work each problem, the student must specify

1. the desired precision $P=4,6,8$, or 15
2. numerical values for A, B, and C.

The object of the problems is to observe round-off error and loss of significance.

Problem 1. (see Conte, Ex. 1.3-1) The computer will use p-digit precision to evel. $=A+B+C, A / C, A-B, A-B-C,(A * B) / C, B / C$, and (B / C) *A.

Problem 2. (see Conte, Ex. 1.4-1, Bx. 1.4-2) Two formulas for finding a root of $A^{*} x^{2}+B * x+C$ are ($\left.-B+\operatorname{sqrt}\left(B^{2}-4^{*} A * C\right)\right) /(2 * A)$ and $(-2 * C) /\left(B+s \gamma_{2} t\left(B^{2}-4 * A * C\right)\right)$. If $4 * A * C$ is "small" comrared to B^{2}, the effect of C can be lost by using the first formula. For various values of A, B, and C and precisions $P=4,6,8$, and 15 , investigate the loss of aignificaince in $B^{2}-4^{*} A^{*} C$ and the results of both formulas.

Suggested Problems for Investigation Mode (Optional). For this lesson, the problem and investigation modes are one and the same.

Suggested values for Problem 1:

$\mathrm{A}=.4152$	$\mathrm{~B}=.3572 * 10^{-4}$	$\mathrm{C}=.6321 * 10^{-6}$
$\mathrm{~A}=1000$	$\mathrm{~B}=.4$	$\mathrm{C}=.4$
$\mathrm{~A}=.4$	$\mathrm{~B}=.4$	$\mathrm{C}=1000$
$\mathrm{~A}=.9367$	$\mathrm{~B}=.9161$	$\mathrm{C}=.9161$

Suggested values for Problem 2:

$A=.01$	$B=1000$	$C=.004$
$A=1$	$B=4$	$C=0$
$A=.0001$	$B=1000$	$C=1$

Student Performance

In order to understand numerical results in future lessons, the student should be fully aware of the concept of round-off error, loss of significance, and how an error may propogate through subsequent calculations. The student should be able to construct his own examples.

Lesson 1: Linear Iteration - Methodology

Reading Assignment

1. Read Conise, pp. 19-21 up to and including the statement, but not the proof, of Theorem 2.1.
2. Read Conte, p. 23.
3. Review the concept of a continuous function.

Computer Assignment
Use the following section names to begin the three available modes:

1. LILOL for the tutorial mode
2. LIPOI for the problem mode
3. LIIOI for the investigation mode

Problem Mode. Automatic computation is supplied for all problems in the problem modes throughout this course. The student is required to supply the mathematical formulation. Time can be saved by analyzing the problems prior to beginning the problem mode.

Problem 1. The function $F(x)=x-\cos (x)$ has a positive zero P. Find an interval (A, B) and an iteration function $G(x)$ so that

1. $A<P<B$
2. $G(P)=P$
3. $G(x)$ and $G^{\prime}(x)$ are continuous on (A, B)
4. $\operatorname{abs}\left(G^{\prime}(x)\right)<1$ on (A, B)

You must supply $A, B, G(x)$, and $G^{\prime}(x)$ for the iteration $x_{k+1}=\left(x_{k}\right)$.
Problex 2. (see Conte, Ex. 2.1-3) Finding the square root of a number A is equivalent to solving the equation $x^{2}-A=0$ or finding a zero of $F(x)=x^{2}-A$. One possible iteration function can be constructed
by setting $x^{2}=A$ and dividing both sides by x to obtain $G(x)=A / x$. Investigate the convergence for various values of A. Which conditions of Theorem 2.1 are violated?

Investigation Mode (Optional). You may use linear iteration on any problem of your own choice. You must supply the iteration equation $x_{k+1}=C\left(x_{k}\right)$ and a starting value x_{0}.

Suggested Problem 1. Find the zero between 1 and 2 of the function $F(x)=.1 * x^{2}-x * \ln (x)$.

Suggested Problem 2. Division by a number colo can be regarded as finding the solution of $F(x)=1 / x-c$. Define $G(x)=x^{*}(2-c x)$ and investigate the convergence for various values of c.

Student Performance
Upon completion of this lesson, the student should be able to use various techniques to transform the equation $F(x)=0$ to the form $x=G(x)$ so that all properties of Theorem 2.1 (Conte) are satisfied.

Lesson 2: Linear Iteration - Theory

Reading Assignment

1. Read Conte, pp. 21-22 and 24-26.
2. Work Ex. 2.1-4.
3. Review the mean-value theorem (see Conte, p. 15).

Computer Assignment
Use the following section names to begin the three available modes:

1. L2LOL for the tutorial mode
2. LIPOI for the problem mode
3. L2IOl for the investigation mode

Problem Mode. Work both problems. You must supply $G(x), G^{\prime}(x)$, and x_{0}.

Problem 1. (see Conte, Ex. 2.1-1) The cubic polynomial $x^{3}+1.9^{*} x^{2}-1.3 *=2.2$ has a zero P near $x=1$. Determine an iteration function $G(x)$ and an interval (A, B) so that for x_{0} in (A, B), the iteration $x_{k+1}=C\left(x_{k}\right)$ will converge to P.

Problem 2. (see Conte, Ex. 2.1-5) The function $F(x)=.7-x+03 * \sin (x)$ has a positive zero P. Determine an interval (A, B) and iteration function $G(x)$ so that for x_{0} in $(A, B), x_{k+1}=G\left(x_{k}\right)$ will converge to P.

Investigation Mode (Optional). You may use linear iteration on any problem of your own choice. You must supply the iteration equation $x_{k+1}=G\left(x_{k}\right)$ and a starting value x_{0}.

Suggested Problen 1. The linear iteration theorem states sufficient, but not necessary, conditions fcr convergence. Let
$F(x)=x^{3}-x^{2}-x-1$ and $G(x)=x-F(x) / x^{2}$. Investigate convergence for a wide range of x_{0}. What conditions of the theorem are violated if we choose $(A, B)^{\prime}=\left(-10^{10}, 10^{10}\right)$?

Student Performance

See the student performance for Lesson 1. Given an iteration function $G(x)$, the student should be able to prove that the sufficiency conditions of Theorem 2.1 (Conte) are or are not satisfied. The student should know the formal meaning of "linear convergence" in terms of limits.

Lesson 3: An Acceleration Technique

Reading Assignment

1. Read Conte, pp. 27-30.
2. Work Ex. 2.2-3.

Computer Assignment
Use the following section names to begin the three available modes:

1. L3LOL for the tutorial mode
2. L3POI for the problem mode
3. L3IOL for the investigation mode

Problem Mode. For each of the problems, you will have to specify the following information:

1. Aitken's delta-squared formula
2. a convergent iteration function $G(x)$
3. an interval (A, B) on which abs $\left(G^{\prime}(x)\right)<1$
4. a starting value x_{0}

Problem 1. (see Conte, Ex. 2.2-1) Find the smallest positive zero of $F(x)=2 * x-\tan (x)$ using linear iteration and Aitken's deltasquared method.

Problem 2. Find the smallest positive zero of $F(x)=.7-x+.3^{*} \sin (x)$ using linear iteration and Aitken's delta-squared method.

Investigation Mode (Optional). You may apply linear iteration and Aitken's delta-squared method to any problem of your own choice. You must specify an iteration equation $x_{k+1}=G\left(x_{k}\right)$, an acceleration formula, and a starting value x_{0}.

Suggested Problem 1. Let $F(x)=x^{2}-c$ where $c>0$. For the iteration function $G(x)=c / x$, apply Aitken's process to the iteration $x_{k+1}=G\left(x_{k}\right)$. Compare with the results of Problem 2, Lesson 1.

Suggessed Problem 2. Let $F(x)=x^{2}-c$ where $c>0$. Define the iteration function $G(x)=x-F(x) / F^{\prime}(x)$. First define the acceleation formula to be $x_{k}^{\prime}{ }^{=x_{k}}$ and find the root. This is equivalent to not accelerating at all. Next, use the standard Aitken's acceleration. Compare the number of iterations for the two methods, say for six digit accuracy.

Student Performance

The student should know Aitken's acceleration formula and given any convergent iteration $x_{k+1}=G\left(x_{k}\right)$, the student should be able to apply the acceleration formula.

Lesson 4: Newton's Method and Quadratic Convergence

Reading Assigrment

1. Read Conte, pp. 31-35.
2. Review the linear iteration theorem (Conte, Thm. 2.1).
3. Review Taylor's theorem (Conte, Thm. 1.5 p. 15).
4. Upon completion of the computer lesson, work exercises 2.3-5 and 2.3-6.

Computer Assignment

Use the following section names to begin the three available modes:

1. L4LO1 for the tutorial mode
2. L4PO1 for the problem mode
3. L4IO1 for the investigation mode

Problem Mode. In each problem, you must supply the requested iteration function $G(x)$, the interval (A, B), and a starting value x_{0}.

Problem 1. (see Conte, Ex. 2.3-1) For any two of the following, find the "smallest positive" zero by Newton's method.
a. $f(x)=2 * x-\tan (x)$
b. $f(x)=4^{*} \cdot \cos (x)-\exp (x)$
c. $f(x)=2^{*} \cos (x)-\cosh (x)$

You must supply an interval (A,B) which contains the desired zero but no other zero of $f(x)$, Newton's iteration, and a starting value x_{0}.

Problem 2. (see Conte, Ex. 2.3-6) $f(x)=(1+1 / x)^{2}$ has a double zero at $\mathrm{P}=-1$. Apply Newton's method and observe that the convergence is Iinear but not quadratic. Determine (A, B) so that abs $\left(G^{\prime}(x)\right)<1$. Camputation is supplied to display the sequences $x_{k}, E_{k}=x_{k}-P, E_{k+1} / E_{k}$, and E_{k+1} / E_{k}^{2}.

Observe that E_{k+1} / E_{k} approaches $G^{\prime}(P)=\frac{1}{2}$ while E_{k+1} / E_{k}^{2} appx aches ∞_{0}. Problem 3. (see Conte, Ex. 2.3-6) Apply the modified Newton's method $G(x)=x-2^{*} f^{\prime}(x) / f^{\prime}(x)$ to the function in Problem 2 and observe that the convergence is quadratic. Determine (A, B) so that abs $\left(G^{\prime}(x)\right)<1$. Computation is supplied as in Pr blem 2. Observe that E_{k+1} / E_{k} approaihes zero and E_{k+1} / F_{k}^{2} approaches $g^{\prime \prime}(P) / 2=1$.

Investigation Mode (Optional). You may use Newton's method or any other iteration $x_{k+1}=G\left(x_{k}\right)$ on any problem of your own choice. You must supply $G\left(x_{k}\right)$ and a starting value x_{0}.

Suggested Problem 1. $f(x)=(1+1 / x)^{3}$ has a triple zero at $P=-1$. Define a modified Newton's iteration by $x_{k+1}=x-m^{*} f\left(x_{k}\right)^{\prime} f^{\prime}\left(x_{k}\right)$. Verify computationally that convergence is linear for $m=1,2,4,5$, and 6 , and quedratic for $m=3$. Verify divergence for m greater than 6 .

Student Performance

The st dent is expected to know Newton's method and be able to apply it to practical problems. The student should know the meaning of quadratic convergence in terms of limits.

Lesson 5: The Secant Method

Reading Assignment

1. Read Conte, pp. 39-43.
2. Review Newton's method, the meaning of linear convergence (E_{k+1} / E_{k} approaches $G^{\prime}(P)$), and the meaning of quadratic convergence (E_{k+1} / E_{k}^{2} approaches $\left.T^{\prime \prime}(P) / 2\right)$.
3. Work Ex. 2.4-2 in Conte after completion of the computer lesson. Computer Assignment

Use the following section names to begin the three available modes:

1. L5LOI for the tutorial mode
2. LSPOI for the problem mode
3. L5IOl for the investigation mode

Problem Mode. For each problem, the stuant mast supply the required iteration functions, an interval (A, B) which contains the required zero, and an initial approximation x_{0} (also x_{1} for the secant method).

Problem 1. (see Conte, Ex. 2.4-1 1) Draw a graph to estimate the zero of $r(x)=x-\tan (x)$ between $P I / 2$ and $3 * P I / 2$. Obtain the zero correct to seven digits by (a) Newton's method and (b; the secant method. A very close estimate of the root P is requirec for convergence.

Problem 2. (see Conte, Ex. 2.4-3) Find the real positive root of $f(x)=\exp \left(-x^{2}\right)-\log (x)$ correct to seven significant digits using the secant method.

Investigation Mode (Optionai). The student may solve any problem of his own choice by supplying an iteration equation $x_{k+1}=G\left(x_{k-1}, x_{k}\right)$ and starting values x_{0} and x_{1}.

Suggested Problem 1. Investigate the convergence of the secant method for $f(x)=(1+1 / x)^{2}$ where $P=-1$ is a double root. Compare the results with those of Problens 2 and 3 of Lession 4.

Student Performance
Tine studenc is expected to know the formula for the secant method and be able to apply it to practical problems. The student should understand the rate of convergence in terms of limits (see Conte, Ex. 2.4-2).

Lesson 6; Simultanenus Equations

Reading Assignment

1. Read Conte, pp. 43: 44 (Last paragrapin)-49.
2. Review the concept of π partial derivative from the calculus.
3. Review Taylor's formula with remainder for functions of two variables (see Contes p. 26).

Computer Assignwent
Use the following section names to begin the three available modes:

1. H6LO1 for the tutorial mode
2. L6PO1 for the problen ode
3. L6TOI som the investigation mode

Problem Mode. For each of the following problems, the student must supply the partial derivatives f_{X}, f_{Y}, g_{X}, and g_{y} and the iteration formulas for Newton's method along with a starting estimate (x_{0}, y_{0}).

Problem 1. (see Conte, Ex. 2,5-2) The system $f(x, y)=x^{2}+y^{2}-1$, $g(x, y)=x * y$ has four solutions. Use varicus starting values (x_{0}, y_{c}) to find them.

Problem 2. (see Conte, Ex. 2.5-3) Use Newton's method to find solutions to the system $f(x, y)=x^{2}+x^{*} y^{3}-9, g(x, y)=3 * x^{2} * y-y^{3}-4$ using starting values (1.2.2.5), (-2,2.5), (-1.2,-2.5), and (2,-2.5). Observe which root the method converges to and the number of iterations required for six signifieent digit aecuracy.

Problem 3. (see Conte, Ex. 2.5-4) Find one solution to the system $f(x, y)=x-\sin (x) * \cosh (y), g(x, y)=y-\cos (x) * \sinh (y)$ using Newton's method.

Investigation Mode (Ontional). The sturient may work any problem of his own choice by supplying the iterntion equations $x_{k+1}=G_{2}\left(x_{k}, y_{k}\right)$, $y_{k+1}=G_{2}\left(x_{k}, y_{k}\right)$ and a starting value ($\left.x_{0}, y_{0}\right)$.

Suggested Froblea 1 . Find a solution cf the system $f(x, y)=x^{2}+y^{2}$, $g(x, y)=x^{4}+y^{4}-1$ by Ivewton's method. Is the convergence quadratic? Explain.

Suggester Problem ?. You will have to ure the investigation more for Lesson 14 (section name LILITOL) to silve this proinjem. Newton's method for three equations in three unknowns $f(x, y, z)=0, g(x, y, z)=0$, and $h(x, y, z)=0$ arises from the solution of

$$
\left[\begin{array}{lll}
f_{x} & f_{y} & f_{z} \\
g_{x} & f_{y} & g_{z} \\
h_{x} & h_{y} & h_{y}
\end{array}\right]\left[\begin{array}{c}
x-x_{k} \\
y-y_{k} \\
z-m_{k}
\end{array}\right]=\left[\begin{array}{c}
-f \\
-g \\
-h
\end{array}\right]
$$

where t, g, h, and all partials are evaluated at ($y_{k}, y, y_{k},{ }^{\prime} k$). Suppose $f(x, y, y)=x^{2}+y^{2}+z^{2}-1, h(x, y, y)=x^{2}-y^{2}+z^{2}$, and $g(x, y, z)=x^{*} y^{*} z$
a. Show that Newton's equations are

$$
\begin{aligned}
& x_{k+1}=x_{k}-x_{k}^{*}\left(y_{k}^{2}+z_{k}^{2}-x_{k}^{2} y_{k}^{2}\right) /\left(2 y_{k}^{2} *\left(x_{k}^{2}-z_{k}^{2}\right)\right) \\
& y_{k+1}=y_{k}-\left(x_{k}^{2}-z_{k}^{2}+y_{k}^{2} w_{k}^{2}-x_{k}^{2} * y_{k}^{2}\right) /\left(2 * y_{k}^{*}\left(x_{k}^{2}-2_{k}^{2}\right)\right) \\
& \left.z_{k+1}=z_{k}-2 z_{k}^{*}\left(y_{k}^{2} x_{k}^{2} z_{k}^{2}-x_{k}^{2}-y_{k}^{2}\right) /\left(2 * y_{k}^{2} * x_{k}^{2}-z_{k}^{2}\right)\right)
\end{aligned}
$$

b. Use $\left(x_{0}, y_{0}, z_{0}\right):=(.2, .8, .8)$ to find the solutior.

Student Performance

The student is expented to learn the iteration formulas for Newton's method applied to two simultanecus equations in two variables and be able to apply the method to practical problems.

Lesson 7: Polynome 2 Equations - Real Roots

Reading Assignment

1. Read Conte, pp. 50-54.
2. Work Ex. 2.6-6 after the computer Lesson.

Computier Assignnent
Use the followinus section names to begin the three available modes:

1. LTLOL for the tutorial mode
2. L'7POI for the problem mode
3. L7IOT for the inventigation mode

Problem Mode For each of the following problems, the student must specify the nested multiplication formules to compute b_{n}, D_{n-1}, $\ldots, b_{0}=p\left(x_{k}\right), c_{n}, c_{n-1}, \ldots, c_{y}=n \prime\left(x_{k}\right)$, 欮ewton's iteration in terms of x_{k}, b_{0}, and c_{1}, and a starting value x_{0}.

Problem 2. (see Conte, Ex. 2.6-1) Use Newton's methor for polynomials to find the real root between 0 and -2 of $p(x)=x^{3}+x+1$.

Problem 2. (see Conte, Fx. 2.6-3) Use Newton's method for polynomials to find a real positive root of
a. $p(x)=x^{4}+6 * x^{2}-1$
b. $p(x)=3 * x^{5}-2 * x^{3}-2$
c. $p(x)=1 x^{12}-11 * x^{17}+8 * x^{7}-2$.

Investisation Mode (Ontional). The student may work any problem of his own choice by spectifying for a polynomial, the degree N, the coefficients $a_{n}, a_{n-1}, \ldots, a_{0}$, and a starting value x_{0}.

Suggested Problem 1. Jse Newton's method and the sequence of reduced polynomials to determine the multiplicity of the root at $x=1$
and $x=-1$ of the polinomial $p(x)=x^{6}+x^{5}-4 * x^{4}-2 * x^{3}+5 * x^{2}+x-2$.

Student Performance
The student is expected to learn the recuraion formulas for Newton's method for polynomials and io be able to apply them to t'ind roots of polynomials.

Lesson 8. Difficulties in Finding Roots of Polynomials

Reading Assigrment

1. Read Conte, pp" 55-59.
2. Review Newton's method for polynomials.

Compuicer Assigrument
Use the followino section names to begin the three availaile modes:

1. LRLOL for the tutorial more
2. I8POL for the problem mode
3. L8IO1 for the investipgation mode

Problem Mode. For each problem, you must, supyly the initial rew cursion formulas for Newton's method for polynominls and a starting value x_{0}. After root is found correct to eipht significant digits, use the reduced polynomial to find the next root correct to eipht, sipnificant digits. When the reduced polynoming is a quadratic, use the quadratic ormula to find the remaning two roots. Obrerye the loss in accuracy caused by exror propageting to the reduced polynoraisls.

Problem 1. (see Conte, Ex. 2.6-4) Four real peros between -3 and 2 exist for $p(x)=x^{4}+2.8 * x^{3}-.38 * x^{2}-6.3 * x-4.2$. Find these roots, terminating the iteration when $\operatorname{abs}\left(x_{k+1}-x_{k}\right)<5 * 20^{-8}$.

Problem 2. $p(x)=x^{4}-5^{*} x^{2}+4$ has exact roots at, $-2,-1,1$, and 2 . Use Newton's method and approximate starting values to find these roota using the sequence of reduced polynomials. Terminate an iterat:ion when $\operatorname{abs}\left(x_{k+1}-x_{k}\right)<5 * 10^{-8}$.

Investigation Mode (Options,). The specifications are the saine as the investigation mode for Lesson F.

Suggested Problem 1. Conte, Fr. 2. G-5
Sturent, Performance
The student, should be awaye of possible atececoltion when atitemptinfe to find the roots of polymomials, e.f. instability, loss of accuracy using, the sequence of redured polynomials, loss of quadratic covergence in case of multiple roots.

Lesson 9: Recursion Foxmulas for Dividing a Polynomial by e Quadratio Factor nnd Keview of Complex Arithmetic

Reading Assignments

1. Read Conte, pp. 59-60

Computer Assignment
Use the following section names to begin the two avallable modes:

1. LMol for the tutorial mode
2. LOPOL for the problem mode

Prokiem Niode. $p(x)=x^{4}-4 * x^{3}+3 * x^{2}+2 * x-6$ has two complex roots.
a. Form the nurdratic divisor $(x-(1+i)) *(x-(1-i))$.
b. Use the recursion cormulas to find $b_{4}, b_{3}, \ldots, b_{0}$ pant thus determine $\mathrm{Q}(\mathrm{x})=\mathrm{b}_{4}{ }^{*} \mathrm{x}^{2}+\mathrm{b}_{3}{ }^{*} \mathrm{x}+\mathrm{b}_{2}$ and $\Gamma(\mathrm{x})=\mathrm{b}_{2}{ }^{*}(\mathrm{x}-\mathrm{S})+\mathrm{b}_{0}$.
c. Observe that $b_{1}=b_{0}=0$ which means $P(x)=0$. Hence, $(x-(1+i)) *(x-(1-i))$ is an exnet afvisor of $p(x)$, that is, $1+i$ and $i-j$ are both complex zeros of $p(x)$.

Student Performance
The student should learn the recursion formulas to compute the b_{1} when dividing a polynomial by quadxatio divisor, The student, skould observe that if the coefficients of $p(x)$ are real, then complex roots of $p(x)$ must occur in pairs $a+b * i$ and $a-b * i$ and $x^{2}-2 * a * x+a^{2}+b^{2}$ is an exact quadratic factor of $p(x)$.

Lesson 10: The Newton-Bairstow Method for Poiynomials - Complex Yeros

Reading Assignment

1. Kead Conte pp. 60-64.
2. Review Jesson 9 (recursion formulas for dividing by a quadratic fantor).
3. Revien Lesson 5 , Newton"s method for solving simultaneous equations.

Compiter Assignment.
Use the foliowinf necbion names to begin the three available modes:

1. LIOLS for the tutorint moile
2. Lanol for the problem mote
3. LIOTnI fom the investiggation mode

Problem More. For each of the problems, the student must speaify:
a. the recursion foxmulas to sompute each b_{1} to obtain b and b_{0}
b. the recursion formulas to compute each c_{1} to obtain c_{3}, c_{2} and c_{2}, and
c. staxting values S_{0} and T_{0} to define the approximate quadratic fentor $x^{2} \sigma_{0} c^{*-T_{0}}$
Problem 1. (see Conte, Fx. 2.7-3) UsE the Newton-Bairstow method to find a quadratic factor of $p(x)=x^{4}+3^{*} x^{2}+1$. An approximate root is $z=1.6 * 1$.

Problem 2. (see Conte, Bx. 2.7-3) $p(x)=x^{4}+2 * x^{3}+6 * x^{2}-13 * x+48$ has a complex zero near $=1+s q r t(3) * i$. Use the Newton-Bairstow method to find a quadratic factor of $p(x)$.

Problem 3. $f(x)=2 * x^{3}-2.0545802 * x^{2}-.9491684$ has a complex zero near $z=.15+.8 * i$. Use the Newton-Beirstow method to find a quadratic factor of $p(x)$.

Investigation Mode (Optional). This mode provides automatic computation for either Iin's method or the Newton-Bairstow method. The student, must specify the method, the degree of the polynomial, the coefficients of the polynomial, and initial estimates S_{0} and T_{0} for the quadratic divisor $x^{2}-0_{0}^{* x-T} 0_{0}$

Suggested Problem 1. $p(x)=x^{4}-4 * x^{3}+10^{*} x^{2}-j 2 x x+9$ has 3. double complex zero near $z=.9+1.4 * i$. Does the Newton-Bairstow method converge quadratically?

Suggested Problem 2. Conte, Exercises 2.7-2 and 2.7-5.
Student Performance
The student should learn the recursion formulas for the NewtonBairstow method and be able to apply the method to practical problems.

Lesson 11: The Solution of Linear Systems by Elimination

Reading Assignment

1. Read Conte, pp. 156-163.

Computer Assimment
Use the following section names to begin the three available modes:

1. Llllol for the tutorial morle
2. LIlPOn for the problem mode
3. LITH for the investipation mote

Problem Mode. In both problems, the computer will maintain six significant, digit accuracy throughout the computation. The object of the problems is to observe the advantage in using the method with pivoting. Both problems deal with the inear system $A x=B$ given by the augmented matrix

$$
\left[\begin{array}{llll}
.000003 & .213472 & .332147 & .235262 \\
.215512 & .375623 & .476625 & . .127653 \\
.173257 & .663257 & .625675 & . .255391
\end{array}\right]
$$

Problem 1. Solve the above system by elimination without pivoting by using the sequence of row operations
(Row J)+M*(Row I) replaces (Row J).
You must specify M, I, and J for each row operation.
Problem 2. Solve the above system by elimination with pivoting by using the row operations

Intercharige (Row I) and (F,Jw J)
(Row J) $+\mathrm{M}^{*}$ (Row I) replaces (Row J)
You must specify the operation to be performed and the corresponding, values of I, J, and M.

Investigation Mode (optional). The student may solve any linear system of his choice using 4, 5, or 8 significant figure accuracy throughout the computation. The student specifies:

1. the precicion 4, 6 , or 8
2. the dimenstion of the system $A x=B$
3. the elements of A and B

Computation $i_{s j}$ supplied by the computex as the student directs any of the following sequence of operstions:

1. Interchewfe (Row I) and (Row J)
2. Replace (Row J) by (Row J) + M* (Row I)
3. Eegin the back-substitution
4. Print the current avgmented matrix
5. Restart the problem with the original A and B
6. Tnput a new A and P
7. Terminate the investigation mode

Suggested Problem 1. Use elimination to find the solution of the system

$$
\left[\begin{array}{rlcr}
6 & 15 & 9 & 13 \\
2 & 17 & 11 & 1 \\
4 & 10 & 1.4 & 8 \\
5 & 12.5 & 7.5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
3 \\
19 \\
11 \\
7
\end{array}\right]
$$

Note what happens after forming zeros in positions A_{21}, A_{31}, and A_{41}. Expl in:

Fuggested Problem 2. This example will be encountered again in Lessons 12 and 13. Note the variation in the solution by using different precision arithmetic.

$$
\left[\begin{array}{ccc}
2.53423 & 8.93734 & 4.37526 \\
1.02435 & 3.61254 & 3.22463 \\
.853217 & 3.00906 & 7.29341
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1.24763 \\
2.55174 \\
6.15257
\end{array}\right]
$$

Lesson 12: Evaluation of. Determinants and Matrix Inversion

Reading Assignonent

1. Read Conte, pp. 169-1.74.
2. Review the method of elimination.
3. Work Ex. 5.5-3 after the cornpletion of the computer lesson.

Computer Assimnment

Use the following section names to begin the two available modes:

1. Th2LOL for the tutorial mode.
2. LILPOI for the problem-investigation mode.

Problem-Investigntion Node. You may specify any problem of your own choice or you may request the computer to renerate a matrix A with random integers as elements. For each pro"clem, you must

1. specify the dimension $N=2,3$, or 4 for the matrix A;
2. specify the elements of A (or sisk for random elements);
3. use elimination to reduce the N by $2 * N$ augmented
matrix A | I to eriangulax form; and
4. use back-substitution to compute $\mathrm{B}=\mathrm{A}^{-1}$

Suggested Problem 1. Conte, Erercises 5.5m, 5.5-2, and 5.5-4.
Suggested Problem 2. Find the inverse of the coefficient matrix in the Suggested Problem 2 of the investigation mode for Lesson 11.

Student Performance

Upon completion of this lesson, the student should be able to apply the method of elimination to find the 1 nverse of a given matrix A, check the accuracy of A^{-1} by comparing $A A^{-1}$ with the Identity matrix I, and given a system $A^{*} x=B$, compute the solution $x=A^{-1} B$.

Lesscia 13: Errors and Conditioning

Reading Assignment

1. Read Conte, pp. 163-169.
2. Review the method of elimination.

Computer Assignment
Use the following section names to begin the two available modes:
J. L13TOL for the tutoriaj mode
2. Ti3POI fox the problem-investigation moda

Problem-Investigation Mode. You may specify any problem of your own choice or you may request the computer to generate a problem for you. In the latter case, the compuer will generate 0 matrix which is illconditioned. For each problem, you must

1. specify the dimension, $N=2,3$, or 4 , of the matrix A;
2. specify the arithmetic precision, $2=4,6$, or 8 significant digits, for all internal computations; and
3. specify the elements of the matrix A and vector B for the system $A^{*} x=B$ or request the computer to generate them for you. To solve a problem, you must direct the computer through some sequence of the activities 1isted below.
4. Interchange rows.
5. Perform the current stage of elimination.
6. Compute the noimalized detexminont (assuming the matrix has been reduced to tujangular form).
7. Compute the solution x after reaching a triangular form.
8. Compute the residual vector arter finding x.
9. Find the solution to the error system $A^{*} E=R$ and compute the
improved solution $y_{n e w}=x+E$ after completion of step 5. Upon completion of a problem, the stuctent may elect to change the precision M and rework the same problem.

Suggested Problem 1. Conte, Exercises 5.4-1, 5.4-2, 5.4-3 and 5.4-4.

Suggested Problem 2. Rework Suggested Problem 2 of the investigation mode for Lesson 12.

Student Pexformance
Upon completion of this lesson, the student should be able to use elimination to find noxm $|A|$ and determine if the system is illcondstioned, set up and solve the error system $A^{*} E=R$; and thus a.ttempt to improve the solution.

Lesson 14: Iterative Methods for Solution of Linear Systems

Reading Assignment

1. Read Conte, pp. 191-195.

Computer Assionment
Use the following section names to begin the three available modes:

1. LILLOL for the tutorial mode
2. L14POl for the problem mode
3. II4III for the investigation mode

Problem Mode. For any two of the following problems, investjgate the convergence of both the method of simultaneous displacements and the methou of successive displacements. You must specify the iteration equations and your choice of starting values.

Problem 1.

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 0 \\
2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1.25 \\
-.5 \\
2.75
\end{array}\right]
$$

Problem 2.

$$
\left[\begin{array}{rrr}
1 & .5 & .5 \\
.5 & 1 & .5 \\
.5 & .5 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4.5 \\
4.0 \\
3.5
\end{array}\right]
$$

Problem 3.

$$
\left[\begin{array}{rrrr}
4 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 \\
0 & -1 & 4 & -1 \\
0 & 0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Investigation Mode (Optional). You may use any stexative method to solve a system of equations of your own choice (linear or nonlinear). You must specify

1. the number of enuations now
2. the N iteration enuetions in terms of $\times 1, \ldots, x N$, and
3. the starting values for each veriable.

Suggested Problem 1. Investigate the convergence of both iterative methods for the lower triangular system

$$
\left[\begin{array}{llr}
1 & 0 & 0 \\
4 & 3 & 0 \\
3 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
-3
\end{array}\right] \cdot
$$

How many tberations are required? Can you generalize to an $n \times n$ triangular system?

Student Performance
Opon completion of this lesson, the student should know both the method of simultanec:s displacements and successive dispiacements and be able to apply them to a linear system of equations.

Iesson 15: Convergence of Tterative Methods for Linear Systems

Reading Assignment

1. Read Conte, pp. 199-203.
2. Review the methorls of simultaneous displacements and successive displacements.

Computer Assignment,
Use the followinf, section rames to begin the threa available modes:

1. LבSLOL for the tutorial mode
2. J.15pol for the problem morr
3. L25TH, for the investigntion mode

Problem Mode. If either the row or column sum critexia is satisfied, we are assured no envergence of both the method of simultaneous displacements and the rethod of successive asplacements. Tf reither is satisfied, a method may or may not converge. For ench of the protlems, investigate convergence of both methods. You must supply the iteration equations anc starting values.

Probiem 1.

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
.5 & 2 & 2 \\
.25 & .5 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1.75 \\
2.75 \\
1.25
\end{array}\right]
$$

Problem 2.

$$
\left[\begin{array}{ccc}
2 & -1 & -.75 \\
3 & 4 & .75 \\
-3 & .75 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2.075 \\
.275 \\
4.1
\end{array}\right]
$$

Problem 3.

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{PI} \\
\mathrm{PI} / 2 \\
\mathrm{PI} / 4
\end{array}\right]
$$

Investigation Mode (Optional) The sperifications are the same ns for the investigation mode for Lesson 14.

Suggested Problem 1. Observe the rapid convergence of both methods for the system

$$
\left[\begin{array}{rrr}
50 & 12 & 7 \\
: 02 & 10 & 1.4 \\
13 & -13 & 31
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
17 \\
9 \\
27
\end{array}\right] .
$$

How many iterations ere required for six aigit, accuracy and for eight digit accuracy? Can you form other systems for which convergence is rapid?

Student performanes
The student is expected to know both the method of simultaneous displaceinents and the method of successive displacements. The student should be able to apply both the row sum and column sum criteria to predict convergence or divergence.

Lesson 16: Numerical Differentiation

Reading, Assignment

1. Pear Gontm, yp. 103-113.
2. Review Taylor's formula with remainier (see Conte, p. 15).
3. Work Ex. 4.1-6 sfter compietion of the computer assignment.

Computer Assignment
Use the following section names to begin the three available modes:

1. LilGLol for the tutorial monde
2. L16PO1 for the problem mode
3. Lil6TOI for the investigation mode

Problem Morie. For each of the problems Ifsted below, find a value of h which will yield the specified accuracy when using the approximations

$$
\begin{aligned}
& D(h)=\left(f\left(x_{i+1}\right)-f\left(x_{i-1}\right)\right) / 2 h=\left(f\left(x_{i}+h\right)-f\left(x_{i}-h\right)\right) / 2 h \\
& D 2(h) x\left(f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)\right) / h^{2}=\left(f\left(x_{i}+h\right)-2 f\left(x_{i}\right)+f\left(x_{i}-h\right)\right) / h^{2}
\end{aligned}
$$

For example, see Ioble 4.1, Conte, p. IL2.
In tints mode, the student, enters a value of h and the values of $D(h)$ or $D 2(h)$ will be printed. The student muxt experimentenily find a value of h for which the combination of truncation exror and round-off error are small anough to yield the specified eccuracy.

Problen. T. (see Conte, Fx. 4.1-4. $\quad f(x)=\cosh (x), x_{1}=1.4$. Desiren accuracy: $\left|f^{\prime}\left(x_{i}\right)-D(h)\right|<.5 * 10^{-9}$ and $\left|P^{\prime \prime}\left(x_{1}\right)-D 2(h)\right|<.1 * 10^{-6}$ Problem 2. $f(x)=\sin (x), x_{j}=.4$
Desired accuracy: $\left|f^{\prime}\left(x_{i}\right)-D(h)\right|<.1 * 10^{-9}$ and $\left|f^{\prime \prime}\left(x_{i}\right)-D C(h)\right|<.3 * 10^{-7}$
Problem 3. $f(x)=\exp (x) / \sin (x), x_{1}=1.1$

Denired accuracy: $\left|*\left(x_{1}\right) \cdots D(h)\right|<.5 * 10^{-9}$ and $\left|*\left(x_{i}\right)-\operatorname{D2}(h)\right|<.1 * 10^{-5}$ Problem 4. $f(x)=\operatorname{sqrt}\left(c^{*} \sin ^{2}(x)+\cos ^{2}(x)\right), x_{1}=5.3$
Desired eccuracy: $\left|{ }^{\prime \prime}\left(x_{1}\right)-J(h)\right|<.5 * 10^{-9}$ and $\left|f^{\prime \prime}\left(x_{1}\right)-D 2(h)\right|<.5 * 10^{-7}$ Investigation Mode (Optional). You may apply any numerical differentiation formula $D(h)$ to any function $f(x)$. You must supply

1. $f(x)$,
2. $D(h)$ to approximate $f^{\prime}\left(x_{i}\right)$ or $f^{\prime \prime}\left(x_{1}\right)$,
3. the first trabuiner point $x_{0}=$ and
4. the spacing, h of the tabular points and the total number ($N<10$) of tabular points.

Upori cormpation of aten 4, the computer will print the tonle of tabuLater function values $(j=0, \ldots, N): i, x_{g}$, and $f\left(x_{i}\right)$. Rach time the student defines a value for i, the computer will print $D(h)$. By typing STOP, the student may restart the problem at any one of the four stems.

Suggested Eroblem 1. The Instability of numerical Bifferentiation can be displayed by cinple examples where the slove and/or concavity of a function chenge rapidly. Consider $f(x)=-2 x^{4}+4 x^{2}+16$. wote that $f(x)$ is symmetric about 0 with $f(0)=16, f(\pm 1)=2 B$, and $r(\pm 2)=0$. In peneral, It is more difficuit to approximate $f^{\prime}(1)$ than $f^{\prime \prime}(0)$ since $f(x)$ changes rapidily at $x=1$. For various values of h, approximate $f^{\prime}(0)$ and $f^{\prime}(1)$ by the three formulas:

$$
\begin{array}{ll}
D(h)=\left(f\left(x_{i+1}\right)-f\left(x_{i-1}\right)\right) / 2 h & O\left(h^{2}\right) \text {-approxination } \\
D(h)=\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right) / h & O(h) \text {-approximation } \\
D(h)=\left(-3 f\left(x_{i}\right)-4 f\left(x_{i+1}\right)-f\left(x_{i+2}\right)\right) / 2 h & O\left(h^{2}\right) \text {-approximation }
\end{array}
$$

For various values of h, approximate $f^{\prime \prime}(0)$ and $f^{\prime \prime}(I)$ by the $O\left(h^{2}\right)$ approximation $D(h)=\left(f\left(x_{i-1}\right)-2 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) / h^{2}$.

Student Pexpormance

The student is expected to know the $D(h)$ and $D 2(h)$ operators used in Problems 2-4 and their respectyve orders. The student, should be sware of the effects of round-oft when h is very small and be able to apply the formulas to practical problems.

Lesson 17: Extrapolation to the Limit

Reading Assignment

1. Read Conte, pp. 114-119.
2. Review Taylor's Pormula with remainder (see Conte, p. 15).
3. After completion of the computer assignment, work Exercises 4.2-1, 4.2-4, and 4.2-5.

Computer Assignment

Use the following section names for the three available modes:

1. LITLOM for the tutorial mode
2. Litpol for the oroblem mode
3. Litan for the investigation mode

Problem Mode. In exch probiem, you will be supplien with a set of tabulated values for a function $f(x)$. Y ou must supply the numeric values or expressions to effect extrapolation to the limit in the table.

Problem 1. Use extrapolation to the Iimit to approximate f'(.4) where $f(x)=\sinh (x)$.

1	x_{i}	f_{i}
0	.300	$\sinh (.399)$
1	.399	$\sinh (.399)$
2	.400	$\sinh (.400)$
3	.401	$\sinh (.401)$
4	.402	$\sinh (.402)$

Problem 2. (see Conte, Mx. 4.2-3) Use extrapolation to the iimit to approximate $f^{\prime}(.5)$ where $f(x)=\sin (x) / x$.

\mathbf{i}	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\boldsymbol{i}}$
0	.3	$\sin (.3) / .3$
1	.4	$\sin (.4) / .4$
2	.45	$\sin (.45) / .45$
3	.5	$\sin (.5) / .5$
4	.55	$\sin (.55) / .55$
5	.6	$\sin (.6) / .6$
6	.7	$\sin (.7) / .7$

Problem 3. Use extrapolation to the limit to approximate $f^{\prime}(0)$ where $f(x)=\exp (-x) * \sin (x)$.

i	x_{i}	f_{i}
0	-.16	$\exp (.16) * \sin (-.16)$
1	-.03	$\exp (.08) * \sin (-.08)$
2	-.04	$\exp (.04) * \sin (-.04)$
3	-.02	$\exp (.02) * \sin (-.02)$
4	-.01	$\exp (.02) * \sin (-.01)$
5	0	0
5	.01	$\exp (\cdots .01) * \sin (.01)$
7	.02	$\exp (-.02) * \sin (.02)$
8	.04	$\exp (-.04) * \sin (.04)$
9	.08	$\exp (-.08) * \sin (.08)$
10	.16	$\exp (-.16) * \sin (.16)$

Investigation Mode (Ontional). You mey ar 7 y extrapolation to the limit to approximate $f^{\prime}(z)$ for your own choice of $f(x)$. You must supply

1. the value of Z,
2. the value of h for the initial approximation $D(n)$,
3. the number of entries $\left(x_{0}, f_{0}\right), \ldots,\left(x_{N}, f_{N}\right)$ in the table ($N<10$), and
4. either the function values f_{0}, \ldots, f_{N} or the function $f(x)$ from which the computer will compute f_{0}, \ldots, f_{N}.

Extrapolated values will se computed line by line in a table of the form
$D(h)$
$D(h / 2) \quad D 1(h / 2)$
$D(h / 4) \quad D 1(h / 4) \quad D 2(h / 4)$
. . .
$D\left(h / 2^{m}\right) \quad D I\left(h / 2^{m}\right) \quad D 2\left(h / 2^{m}\right) \quad . \quad . \quad . \quad D m\left(h / 2^{m}\right)$
Suggested Problem. Use extrapolation to the limit to approximate $f^{\prime}(0)$ and $f^{\prime}(1)$ for $f(x)$ given in Suggested Problem 1 of the investigation mode in Lesson 16.

Student Performance
Given a function or table of function values, the student should be able to apply extrapolation to the limit and state the order of any approximation in the table.

Lesson 18: Numerical Integration - The Trapezoidal Rule
Reading, Assignment

1. Read Conte, pp. 119-124.
2. Review Rolle's theorem (see Thm .2 .3 , Conte, p. 15).
3. Review the second theorem of tie mean for integrals (see Conte, p. 15).

Computer Assignment
Use the following section names to begin the three available modes:

1. LIBLOL for the tutorial mode
2. L18POI for the problem mode
3. La 18 ron for the investigation mode

Problem Mcde. For each problem in this mode, use the trapezoidal rule to approximate the integral of $f(x)$ from A to B. To solve the problem, you must specify

1. the error $\mathbb{E}(h)=-h^{P^{2}} f^{\prime \prime \prime}(g) / 12$ in terms of h and z where $A<z<B$,
2. a value of h analytically determined so that $\max |E(h)|<\varepsilon$ on $[A, B]$ for a prescxibed ϵ,
3. the number of subdivisions N based on your value of h, and
4. the formulas for the trapezoidel rule based on $\operatorname{tnt}(N / 4)+1$, $\operatorname{Int}(N / 2)+1$, and N subdivistons of $[A, B]$ in terms of f_{i} and h.
Problem 1. $f(x)=\operatorname{sqrt}(x)+1 / \operatorname{sqrt}(x),[A, B]=[1,2]$, and $\epsilon=.5 * 10^{-2}$
Problem 2. $f(x)=\exp \left(-x^{3}\right),[\Lambda, B]=[0,1], \varepsilon=.5 * 10^{-2}$
Investigation Mode (Optional). You may apply the trapezoidal rule to approximate an integral of your own choice. You must specify $f(x)$,
A, B, and the number of subhivisions no ind.
Suggested Problem 1. $f(x)=\frac{2}{2+\sin \left(10^{*} P I^{*} x\right.}$ is a periodtc function with period equal to .2. One danger in using, equally spaced points for integration is discovered by the numorical integration of periodic functions. Investigate this effect by using the trapezoidel rule with $\mathrm{N}=30,35$, and 40 subdivisions (31, 36, and 41 points) to approximate $\int^{1} f(x) d x$. The exact value is $2 / \operatorname{sqrit}(3)$. -

Suggested Problem 2. $f(x)=a b s(x)$ has a discontinuiby in the first derivative at $x=0$. So the error tormuia does not apizy if the interval for integration contgins 0 as an interior point. Yot the method is exact if we subdivide the interval so that, 0 is an end point of a nubdivision. Investigate this effect by using the trapezoidal rule to approximate $\int_{-3 / 4}^{2}$ abs $(x) d x$. Use an even and odd number of points. Explain the results.

Student Performance

The student should know the trapezoidal formula and be able to apply it to approximate definite integrals. The student should know the error formula and be able to analytically determine a value of n, for simple functions, so that the absolute error is less than some prescribed tolerance.

Lesson 19: Romberg Integration

Reading Assignment

1. Rear Conte, pro 126-172.
2. Review the trapezoldal ruje.
3. Review Tayloris formuln with remainder (see Conte, p. 25).

Computer Assignment
Use the following section names to begin the three rvailable modes:

1. Lugrol for the tutorial mode
2. L19PO1 for the pxoblem mode
3. $\mathbf{~ 3 9 T O I}$ for the investigation mode

Problem Mode. For the following problems, you al 2 to state the traperoidal wule for the spracified values of \mathbb{N} and the formilas for extrapolation to the Limit. Numerical values will be supplied as the formulas are constructer,

Problem 1. Use Rombera integration to approximate the integral of $f(x)=\sin (x) / x$ from 0 to 1 using $N=1,2$, and 4 subdivisions. Note $f(0)=1$ by investigating the 1 imit.

Problem 2. Use Romberf integration to appxoximate the integral of $\boldsymbol{P}(x)=\ln (x)$ from 2 to 3 using $N=2,2,4$, and 9 subdivisions.

Investigation Mode (Optional). The student may use Romberg integration to approximate his own choice of the integral of $f(x)$ from A to B. The student supplies $f(x), A, B$, and the initial number of subdivisions $N<20$. $h=(B-A) / N$ will be computed ard the extrapolation results will be printed line by line for $h / 2, h / 4$, etc. using $2 * N, 4 * N$, etc. subdivisions until the number of subdivisions exceeds 40.

Sugpested Iroblem 2. See Suggested Problem I in the investigation mode for Lesson 19. Use Yomberg integration.

Suggested Problem 2. See Sugeasied Froblem 2. in the investigation mode for Lesson 18. Use Romberg, intepration.

Student Performance

The student should be able to apply Romberg integration to approximate the veiue of an integral. This requires dofining the formulas needed to construct, the Romberg integration table. The student should know the order of the approximation for any entry in the table.

Lesson 20: Numerical Integration - Simpson's Rule

Reading Assignment

1. Read Conte, p. J. 1. (first half page).
2. Read Contey pp. $134-137$, beginning with formula 4.57 .
3. Review the traperoidat mulf, Rombera intefration, and the second theorem of the mean for inteprals (see Conte, p. 15).

Computer Assignment
Use the following section names to begin the three available modes:

1. L2OLOL for the tutorial mode
2. L2OPO1 for the problem mode
3. L2OIOL for the investigation mode

Problem Mode. For the problems, approximate the integral of $f(x)$ from A to B using $N=3$ and $N=5$ points (2 and 4 surdivisions) to ditain the $O\left(h^{2}\right)$-trapezoidal estimates $T O[0]$ and $T O[1]$. Then use simple extrapolation to obtain the Improved estimate TI[1]. Finrliy, use Simpson's rule with 5 points to approximate the integral. The results of $\mathrm{Tl}[1]$ and Simpson's rule should be the same.

Prohlem 1. (see Conte, Bir. 4.5-7) $f(x)=\sin (x) / x, f(0)=1, A=0, B=]$.
Problem 2. (see Contie, Fx. 4.5-4) $f(x)=\exp \left(-x^{2}\right) * \sin (x),[A, B]=$ [0,1].

Problem 3. (see Conte, Bx. 4.5-2) $f(x)=\exp \left(-x^{3}\right),[A, B]=[0,1]$.
Investigation Mode (Ontionel). You may use simpson's rule to approximate the integral of your own choice of $f(x)$ from A to 3 . You must suppiy $f(x), A, B$, and $N<11$ (number of $2 h-1 e n g t h$ intervals).

Suggesten Problam 1. Soe Gugrester Problem 1 in the investigation mode for Lesson 18. Use Simpon's rule.

Suggented Prcblem 2. See auggested Problem ? In the investigation mode for Lesson 18 . Use Simpson's rule.

Student Performance
The student should be able to state and apply simpson's xisle for 2*N subdivisions to approximate an integral. He should be able to state the error formia $E(h)$ and, for simple fur Lons, choose h so that $\max |E(h)|<\varepsilon$ for a. specified. ε.

Lesson 21: Numericai Integration of Ordinexy Differential

 Equations ty Tarior Series ApproximationsRearing, Assignment

1. Kead Conte, py. 212-217.
2. Review maylor's formule (see Conte, p. 15).
3. Review the definition of the order of an approximation (see Conte, p. 115).

Computer Assignment
Use the tull owing section names to begin the three available modes:

1. Lijulol for the tuiorial mode
2. Lielpol for the problem mode
3. Ye2tol for the investipation mode

Problem Mode. In the following problems, you are to numerically approximate the true solution $y(x)$ on [A,B] by Taylor's algorithm of orders 3,2, nind 3 for the given $y^{\prime}=f(x, y)$ and $y(A)$. Hxperiment with several values of h. As h is chosen smallex, the approximations become more accurate. For each problem, you must determine

1. $f_{x}, f_{y}, f_{x x}, f_{y y}$, and $f_{x y}$,
2. $y_{i+1}=y_{i}+h * T\left(x_{i}, y_{j}\right)$ a.s the maylor algorithm and specify $T(x, y)$ for orders 1,2 , and 3 , and
3. a value $N=$ step size for computation of x_{i}, y_{i} for $i=0,1, \ldots, N$.

Problem 1. (see Conte, Ex. 6. $2-2$) Let $y^{\prime}=f(x, y)=2 y,[A, B]=[0,1]$, and $y(0)=1$. The exact solution is $y(x)=\exp (2 x)$.

Problem 2. (see Conte, Ex. 6.3-1) Let $y^{\prime}=f(x, y)=-x y+1 / y^{2}$, $[A, B]=[1,2]$, and $y(1)=1$,

Investifation Mode (ostional). You may use Taylor's algorithm of orders 1, 2, and 3 to solve any problem $y^{\prime} m(x, y)$ over the interval $[A, B]$. You must, mecify

1. $y^{*}=f(x, y)$,
2. the desiren oxder and corresponding expressions for f_{x}, f_{y}, $f_{x x}, f_{y y}$, and $f_{x y}$,
3. initiel conditions ($A, y(A)$ and the final value of $x=B$, and
4. h so that $N=(B-A) / h$ is an integer less than 101.

Suggested Drobirm 1. Consider the insitian value problem $y^{\prime}=y^{?}$ with $y(1 / 2)=2$. The exact solution is $y(x)=\frac{1}{2-y}$, Note that exact, solution y and aill of its derivativen $y^{\prime \prime}=f, y^{\prime \prime}=f^{\prime}$, etc. have a sinpularity at $m=1$. Thus integration ovex the interval [1, 1.4] to approximate $y(1.4)=-2.5$ violates the assumptions of continuity on y, f, f etc. Use various values of h and Taylor' 3 nlgorithm of orders 1,2 , ard 3 to see how integration over singularitias bohnves. Then repeat the integration starting at $y(1.2)=-5$ to aroid the sinpularity at, $x=1$.

Student Performance

Given an initial value problem $y^{\prime}=f(x, y), y(A)$ specified, the student should be able to apply the computationol method for Maylor's aigorithm of orders 1, 2, or 3 to approximate $y(x)$ over an interval [$A, B]$.

Lesson 22: Second Order Runge-Kutta Methods

Rearing, Assignment

1. Read Fonte, pp. 220-2ers.
2. Work ix. 6.5-3 in Conte.
3. Review Taylor expansions of functions of one and two variables (see Conte, pp. 15-16).

Computer Assignment,
Use the followina, seation nemas to segin the three available modes:

1. Le2dol for the tutorial mode
2. L2rPOL for the problem mode
3. Ie?rog for the investimation mode

Problem Mode. For each problem, find the solution to the initial value problem over the specified interval. Use $A=0, B-1, C=D=1 / 2$ for the modified Fulor's method and $A=B=1 / 2, C=D=1$ for the improved Euler's method. The genersy second order Ruage-Kutta methad is

$$
\begin{aligned}
& y_{i+1}=y_{i}+A^{*} K I+B * K 2 \\
& K]_{-h} * f\left(x_{i}, Y_{i}\right) \\
& K ?=h * f\left(x_{i}+C * h, Y_{i}+D * K I\right)
\end{aligned}
$$

'The stodent must specify $K\left(x_{i}, y_{i}\right), K 2\left(x_{i}, y_{i}\right)$, the formula for y_{i+1} " and any value of $h \geq .01$ so that the number of integration steps N is an integer.

Problem 2. (see Conte, Ex. 6.5-2) Let $y^{\prime}=f(x, y)=x+y, x_{0}=0, y_{0}=1$, and final $x=1$.

Problem 2. Let $y^{\prime}=f(x, y)=\exp (-y / x)+y / x_{i}, x_{0}=\exp (1), y_{0}=0$, and fival $x=1+\exp (1)$.

Investigation Mode (Optiona)). You may use any second order Runge-Kutta methrd to solve an initial value problem $y^{\prime}=f(x, y)$. You must specify

1. $\mathrm{y}^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
2. initial conditions x_{0}, y_{o} and finall x
3. parameters A, B, C, and D to satisfy $A+B=1, B * C=B * D=1 /$?
4. the number of integration steps $N<102$

Student Performance

Gfven $y^{\prime}=f(x, y)$ with initiel conditions $x_{0}, y\left(x_{0}\right)$, the student, should be able to fomulate any Runpr-Kutte mothod by specifying the formulas for KI, K, and $\mathrm{y}_{\mathrm{i}+1}=\mathrm{y}_{\mathrm{i}}+\mathrm{A}^{*} \mathrm{KI}+\mathrm{B} * \mathrm{~K}$? . The student should know what values of A, B, C, and D to use for the modified Fuler's method and the improved Euler's method.

Lescon 23: Numerical Integration, Error Estimation, and Extrapolation

Reading Assignment

1. Read Conte, pp. 217-200.
2. Review Taylor's algorithm of order 2.
3. Reviek second order Runge-Kutta methods.
4. Review the mean value theorem for derivatives (see Conte, p.15).
5. Review the definition of the oxder of an approximation (see Conte, p. 115, Tommule 4.18).

Computer Assignment
Use the following section names to begin the two available modes:

1. Ja3tor for the futorys mode
2. TazP0? for the probien invertigetson mode

Problem-Investipation Mode (Optional). You may apply the Taylor algorithm of order 2 or any second order Runge-Kutta method to approximate the solution to $y^{\prime} m f(x, y)$ of your own choice. You must supply

1. $y^{\prime}=f(x, y)$.
2. f_{x} and f_{y} in case of Taylor's algorithm,
3. A, B, C, nid D in cese of a Ruge-Rwtta method,
4. initial conditions x_{0}, y_{0} and final value for x, and
5. whe number of integration steps $N<10 \%$.

The computer will provide the numen sal integration results, ZN for \mathbb{N} steps, $Z 2 N$ for $2 * N$ steps, and the extrapolated result $Z=(4 * Z 2 N-2 N) / 3$.

Student Performance

The student should know the general formulas for second order Runge-Kutta methods or Taylor's algorithm. On the basis of N and $2 * \mathrm{~N}$ integration steps, the student should be mble to compare the valuen of ZN and ZaN to determine a lower bound on the number of correct digits in the answer. Similarly, the student should compare ZZN and the extrapolated value Z.

Index

Titles of Lessons and Sections - Computer Section Names

Lesson A: Xeybomer Orientation

1. Transfer of Control Between the Student
and Computex
2. Correction of Ryping Errors - the RUBOIJT Key LOLOR
3. Correction of Typing Errors - the \# Key LOLO3
4. Mathemationl Expressions LOLO4
5. Subsexipted Vortmbles LOLO5
6. The Disitinguished. Name PT LOLO6
7. Available Mathematical Functions - Latitude in Usage LOLO7
8. First :istimates of Zexos (Roots) of Punctions LOLOB

Lesson B: Computer Numbers and Cownutational Error

1. Floating Point Representation LOLIl
2. K-Diajt Nomma? ized Floating Point Representation LOLI?
3. Exrors in Compter Representation of Numbers LOLI3
4. Errors Intronuced by Computer Operations LOLI. 4
5. Propogation of Exior LOLi5
6. Problen-Investigation Mode LOPO1

Lesson 1: Linear Tteration - Methodology

1. Fixed Point of a Function LLLCI
2. Geometric Meaning of a Reai Fixed Point LILOL
3. Transtormation of the Fuxction $F(x)=0$ to the
Equetion $x=G(x)$
4. Method of Tteration to Eind a Zero of $F(x)$ LILO4
5. Sufficient Conditions for Convergence of an
Iteration $x_{k+1}=\mathbf{G}\left(x_{k}\right)$
6. Tents for Convergence LIL06
7. Problem Mode LIPO1
8. Investigation Mode 1,1IO1
Lesson 2: Linear Itexation - Theory
9. Revier of the Method L2LOL
10. Innear Iteration Theorem L2LOP
11. Meaning of Linear Iteration (Lincar Convergence) L2LO3
12. Problem Mode L2PO1
13. Investigation Mode L2IO1
Lesson 3: An Acceleration Technique
14. Geometric Sequences L3LO1
15. Aitiken's Delta-squared Process L3LO2
16. Aitken's Delta-Squared Process Applied to Linear Iteration L3LO3
17. Problem Mode L3P01
18. Investigation Mode LSIO1
Lesson 4. Newton's Method and Quadratic Convergence
19. Newton's Method L4LOI
20. Convergence Proof for Newton's Method L4LO2
21. Quadratic Convergence For Newton's Method L4LO3
22. Problem Mode L4PO1
23. Investigation Mode 14101
Lesson 5: The Secant Method
24. The Iteration Equatior. L5LOL
25. Convergence Behavior of the Secant Method L5L02
26. Problem Mode L5PO1
27. Investigation Mode L5IO1

Lesson 6: Simultaneour Rquations - Newton's Method

1. Review of Partial De ivatives - Notation L6LOI
2. Derivation of Newton's Method for Functions of Two Variables L5LOE
3. Newton's Iteration Formulas L61,03
4. Quadratic Convergence of Newton's Method L5Lole
5. Problem Mode L6PO1
6. Investigation Mode L6IO:
Lesson 7: Polynomial Equetions - Real Roots
7. Evaluntion of Polynomials by Nested. Multiplication LTLOL
8. Review - Division Algomithm for Polynomials L'TLOR
9. Formal Dexivation of the Nested Multiplisation Algorithm for Evaluation of a Polynomial LTLO3
10. Evaluation of the Derivative of a Polynomial LTLO4
11. Newton's Mathod for Polynomials LTLO5
12. Problem Mode LTPOI
13. Investigation Mode LTIO1
Lesson 8: Difficulties in Finding Roots of Polynomials
14. Review of Newton's Method for Polynomials L8LO
15. Behavior of Newton's Method for Double Roots L8LO2
16. Tre Concept of Instability L8L03
17. Problem Mode L8POI
18. Investigation Mode L8IO1
Lesson 9: Resurston Formulas for Dividing a Polynomialby a Quadratic Factor and Review of Complex Arithmetic
19. Division Algorithm L9LO1
20. An Algoritim for Computing the Coefficients of the Quotient Polynomial $Q(z)$ and Reminder $R(x)$ when Dividing a Polynomial $P(x)$ by a Quadratic Polynomis. $x^{2}-5 * x-T$ L9100
21. Complex Numbexs, Complex Conjugates, and Quadratic Polynomiels with Complex Roots L9LO 3
22. Problem ModeL9P01
Lesson 10: The Newton-Bairstow Method fox Finding Complex Zeros of a Polynomial
23. Review of Division Algorithm for Dividing $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ by $x^{2}-S x-T$ LIOLOI
24. The Newton-Bairstow Ior Improving an Approximate Quadratic Factor L10LO2
25. Problem Moie L1OPOI
26. Investigation ModeLlOIO1
Lesson 11: Whe Solution of Linear Systems by Elimination
27. Representation of Linear Systems by the Augmented Matrix LILLOT
28. Gaussian Elimination LIlLO2
29. Formation of Gaussian Multipliers L11L03
30. Prohlem Mrie L11POI
31. Investigetion Mode LllIO1
Lesson 12: Evaluation of Determinants and Matrix Inversion
32. Evaluation of Determinants by Using Gaussian Elinination LleLOI
33. Review of Matrix Multiplicotion (Optional) Ll2LO2
34. Matrix Inversion by Using Geussian Elimination L22LO3
35. Use of the Inverse Matrix to Solve Linear Systems L12LO4
36. Problem-Investigation Mode L12P01
Lesson 13: Errors and Conditioning
37. Inl-Conditioned Systems L13L01
38. "Normalized Determinant" as a Measure of the Condition of the Coefficient Matxix
39. Computation of Norm $|A|$ for the General. N by N Matrix L13L03
40. Iterative Process to Improve the Numerical Solution of an Ill-Conditiuned. System L13LO4
41. Problem-Investigation Mode Ll3PO1
Lesson 14: Iterative Methods for Solution of Linear Systems
42. Method of Simultaneous Displacements L14LOI
43. Matrix Foxmulation of the Method of Simultaneous Displocement, L24L02
44. Method of Successive Displacements L14LO3
45. Criteria for Terminating an Iteration L214LO 4
46. Problem Mode 214POJ
47. Investigation Mode L24IO1
Lesson 15: Convergence of Iterative Methods for Linear Systems
48. Review - Method of Simultaneous Displacements L25LOd
49. Formation of the Error Equations L15LO2
50. Column Sum Criteria - Sufficient Conditions for Convergence of the Method of Simultaneous Displacements Ll5LO3
51. Row Sum Criteria - Sufficient Conditions for Convergence L.15LO4
52. Dominance Tests for Convergence and Review of Lesson L15LOS
53. Problem Mode L25P01
54. Investigation Mode Ll5IO1
Lemson 16: Numerical Differentiation
55. Oxder of an Approximation L16LOI
56. Functions Tabolated on an Equally Spaced Set of Points LI6LO2
57. Inmerical Approximetion of $f^{\prime}\left(x_{i}\right)$ L26LO3
a. $O(h)$-Approximation of $f^{\prime}\left(x_{1}\right)$b. $O\left(h^{2}\right)$-Approximation of $f^{\prime}\left(x_{1}\right)$ for $0<1<\mathbb{N}$c. $O\left(h^{2}\right)$-Approximation of $f^{\prime}\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{N}\right)$
58. $O\left(h^{2}\right)$-Approximation of $f^{\prime \prime \prime}\left(x_{1}\right)$ for $0<1 \ll$ L16LO4
59. Computational Accuracy of Numerical Differentiation 216LO5
60. Proiflem Mode L16PO1
61. Investigation Mode 216IO1
Lesson 17: Extrapolation to the Limit
62. Review of the Order of an Approximation L17LOL
63. Simple Extrapolation for Differentiacion LITLOR
64. Repeated Extrapolation for Differentiation L17LO3
65. Extrapolation to the Limit for Differentiation Llits. 04
66. Problem Mode L2.TPOI
67. Investijgation Moủs L27IO1
Lesson 18: Numerical Integration-The Trapezoidal Rule
68. Notation for the Integral L28LOI.
69. Second Theorem of the Kean for Irtegrals LI8LO2
70. Review of Rolla's : Thecizem L18L03
71. Brror in Linear Approximation of a Function L18LO4
72. Derivation of the Trapezoidal Rule and Its Error L18L05
73. General Application of the Trapezoidal Rule Li8L06
74. Problem Mote L18POI.
75. Investigation Mode L18101
Lesson 19: Rotiberg Integration
76. Intreduction L19LOI
77. Basic Differentiation Formulea L19L0?
78. Genern Foxmulation of the Trapezoidel Fule L29L03
79. Romberg Integration-Simple Fxtrepolation L1.9LO4
80. Romborg Integration-Repeated Extrapolation L29LO5
81. Romberg Integration-Extrapolation to the Limit L19106
82. Problem Mode LIOPO1
83. Investigation Mode L19101
Lesson 20: Numerical Integration-Simpson's Rule
84. Review of the Trapezoldal Rule L20LOI
85. Review of Romberg Integration - Simple Extrapolation L2OLO?
86. Simpson's Rule on an Intexyai of Length $2 h$ $\mathrm{L} 20 \mathrm{O}, \mathrm{O}$
87. Cenersl Norm of Simpson's Rule J.2OLO4
88. Driox Fonmix for Simpson's Rule L.20.0 05
89. Problem More ILROPO1
90. Investifgtion Mode L2.OIO1
Lesson 21: Numerical Integration of Oxdinary Differential Eauations by Taviox Series Approxsmation
91. Statement of tha Instial Value Dxoblem T221,01
92. Taylor's A"porithm of Order 1 - Euler's Method LPILOE
93. Review of Notation for Partial and Total Derivatives L21203
94. Taylor's Algorithm of Order 2 $\mathrm{L}_{2} \mathrm{ILO}_{4}$
95. Taylor's Algorithm of Onder 3 L271.05
96. TayZor's Algorithm of Order k L21LO6
97. Problem Mode L21POL
98. Investipation Mode L21IOL
Lesson 22: Secone Order Ruage-Kutta Methods
99. Intxoduction L22L01
100. Numertinl Example of a Second Order Runge- Kuttio Method L22L02
101. Optimal Parameters A, B, C, and D L22103
102. Special Cases and a Look at the Local Error L22L04
103. Problem Mode L22PO1
104. Investigation Mode L22IO1
Lesson 23: Numerical Integration, Error Estimation, and Extyepolation
105. Reviaw of Second Order Methods for Solution of $y^{4}=f(x, y)$ L23L01.
106. Estimation of the Cumulative Exror $y_{N \mathrm{~N}}-\mathrm{y}\left(\mathrm{x}_{\mathrm{N}}\right)$ L23LOE
107. Practical Eistimation of $\mathrm{y}_{\mathrm{N}}-\mathrm{y}\left(\mathrm{x}_{\mathrm{N}}\right)$ and Extrapolation L23LO3
108. Problem-Investigation Mode L23P01

APPITDIX B

Lhesson phans

 presonted in the course, the depth of csch individual tonic. min bime degree of student participation, an outilne of each lomnon la prosented In a condensed form. Throughout the outilne, the genoral aratidytee
 oxercise. All otner nctivities amouni to a computar presentation of course material with no etudent interaction. No description of the problem and investigation modes is presented here since thene moxe mat described In the associnted atudy guides in the Strudent Manusi (nee Appendix A). The raador may find It useful to further consult the Stcient Manual for remding assigments and the expected mivdent perPormance.

Lenson A: Keyboerd Orientation

Purpose
Introduce thoge keys on the KSR-33 Teletype terminal which wili be frequentiy usea by the stonent in constructing responses. Define the arithmetic paxators, function names, and other aymols which can be used in constructiag mathematical remponses.

> Fectquiadte

The student needs an lementary knowledre of arithmetie typrembiona in Fortran.

Leason outlyn

 the use of the (RHithRw) key in sigraitue complution of resporiet suy the use of the \# characier to aignel the expectintion of arapome.

Sxercises: Tha stuient practicen using the (Rympen xay.
2. Corxection of Iyplru Errors-mthe (RUBOIT) Xex. Dow utrate the une of the (RUBOUT) hey as a ogieni eraser.

Hrercises: The student practices the correction of typing errora with the (RUBOITS) koy.
3. Correction of Tyaing Exrorsmothe Key Demonetrate the use of the \# key by the student as a logical back anmex.

Exercises: The student practices using the \# key and (Rubour) key.
4. Arithmetic Operators. Describe the keyboard locntion of the +, -, *, and / keys.

Exaralses. The student practices typing sevaral arithmetic axpressions.
5. Subscylpted Vartshles Describe the use of [and] as delimiters of subscript expyessions.

Exercises: The student types subscripted expressions.
6. The Mistingaishou Name PI. Define PI as the nome for the tranecendental number m.

Pxercise: What are three distinct values of x (in radians) so that $\sin (x)=0$?
 which are available to the atudent, e.g. trigonometrie, wryonential. logarithm, ets.
 method as the location of an interval $[A, B]$ on which $f(x)$ is continuous and $f(A) f(B)<0$.
 $f(A) f(B)<0$ for $f(x)=x-e^{-x}$, for $f(x)=x+e^{\cos }$, for $f(x) \operatorname{mox} x-\tan (x)$ 。

The student may repeat the last exercise for any of the $f(x)$ as orten as he wishes.
 the form $h(x) m(x)$ where, in the latter form, one ecekt a point mere h and g have the same value. Damonstrate the concept for $f(x)=x-e^{-x}$ by letting $h(x)=x$ and $g(x)=e^{-x}$.

Exercige: Let $f(x)=x \cos (x)$. Nsme two functions $g(x)$ and $h(x)$ uhich have a common point at a zero of $f(x)$.

Bxercise: Same as pravious exetcise with $f(x)=x^{3}+x^{2}-2 x-2$.
The student may repeat the last two exexcises as often an he winkes.
Deacribe the third method as one which applies for real roots of polynomials. For $p(x)=a_{n} x^{n}+\ldots+a_{0}$, the solution to $q(x)=a_{n} n+a_{n-1}$ mey give a "good" estimate of a root which is relatively large in magaitude. The solution to $q(x)=a_{1}{ }^{x+a_{0}}$ may yleld a "good" estimate of a relatively small root.

Exarcise: Estimate the largest and amallest root (in magnitude) of $p(x)=x^{3}-11.1 x^{2}+11.1-1$.

Exercise: Estimate inge largest root of $p(x)=x^{4}+10 x^{3}-11.2 x^{2}-2 x+2.2$.

Purpose

 computer by counting the arailable floatiac point numbexs. Demonatrme the effects of towncation, symotric rounding, gaopogation of arxor, and loss of significance. Illustrate possible instability in recursion formulas.

Prexaquisites

The student muat be familiar with the terminal weybound (see

Lenmon A)

Thancon Oubilene

1. Ploating Point Reprementation (E-format). Define the ploating point represenvation and the fur tion of the mentissa and axponent.
 a IIst of possible Monting pont reprementutionc.
2. kobigit Hoxmalizod Flonting Point Reprasentation. Defina a k-digit nowmsifzed floating point form as a normalized floating point number with a k-digit mantissa. It the exponent is zero, then the exponent carries a positive sign.

Buercise 2A: Nrite Nwo. 04387 in 5-digit nomealized form.
3. Errors in Computer Representation of Mrebars.

Exercise: How many "positive" 5-digit normalized nuoubrs cas be represented by .XXXXXIHPYY where Pat or -? How many "nagative" 5-dicit normalized numbers can be reprenented by the form -. XX000. PY y

Define symetrl.c coundine on nome?
Exexcize 3A: What is the 4-dicit rounded computary rumpemantation of $\mathrm{N}=-10 / 7$?

Define txuncation of axconsive digits withow wowases
Inereise 3B: What is the 4-digit truncated computer representation of $\mathrm{NalO} / 7$? of $\mathrm{Nm}-\mathrm{L} / \mathrm{g}$?
4. Errors Inswoduced by Scemputar Operations. Lemonntrat tha 4

Exercise 4A: Write the 4-digit nomalized floating point representation of $(x+y)$ ' when $x=.3675$ and $y w .8734$.

Define lose of significames.
Exercise 4B: Let $x=36214743$ and $y=.436173111$. In a 5-digit machine, $x^{\prime}=.436213+00$ and $y^{\prime}=.43617 \mathrm{E}+00$, x^{\prime} and y^{\prime} agree with x and y through how meny digita? What is the 5miglt computer result ($x^{\prime \prime}-y^{\prime}$)'?
 how many digits? Let $z=.32174582$ with the computer representation $z^{\prime}=.321751+00$. Asswaing the dcable preciaion divident z and the single precision divisow (x ' $-y^{\prime}$)'m. $40000 \mathrm{e}-04$, what is the 5 -digit rounded normallzed representation ($\left.z^{*} /\left(x^{\prime}-y^{\prime}\right)^{\prime}\right)$?
5. Propogation of Error. Describe two methods for computing n! times the remainder after n terms of the Macclaurin series for e^{x}.

Method 1: $\mathbb{F}(n, x)=n!\left(x^{n+1} /(n+1)!+\ldots\right)$ where the procene in terminated whei $n!\left(x^{p} / p!\right)$ becomes insignificant.

Method 2: $P(0, x) \operatorname{mxP}(x)-1$ where $\operatorname{EXP}(x)$ is computed an accuxately as possible by the MacClawrin meries anf $F(n+1, x)=(n+1)(F(n, x))-x^{n+1}$ for $n=0,1 \ldots$

 computed by the two methois.

Leman 1: Innear Iteration-Methodology

Purpose

 $g(x)$ through both convargent and divergent itarations $x_{k+1} \operatorname{miz}_{3}\left(x_{k}\right)_{\text {o }}$ state sufficient onditicas for convergence. Dercribe several decision techniquas for stopping a convexgent iterstat m.

$$
P_{r} \text { mquatitos }
$$

Heccmended prexuquiate materini incistem techniques for obtaining firat eatimates of zeros of functions (Lesson A) and proposation of round-off error (Lesson B).

Lesson Outiline

1. Pixed Foint of a Function. Define a fixed point of $g(x)$ as a value P as that $g(P)=P$.

Exercise 1A: Find a fixed point of $g(x)=2 x-7, g(x)=x^{2}+x-1$, and $g(x)=x^{3}-B^{3}+x$.
2. Geometric Mouning of a ${ }^{2}$ xud Point. Construct a graph whowing the relationship between a zero of the function $g(x)-x$ and the intersection of $y m x$ and $y m g(x)$.

Exercise 2A: P=-1 is a fixed point of $g(x)=x^{2}+x-1$. So P is a zero of what function?
 $g(P)=0$. Then P if the intermection between two curven, nowinisy $y m x$ and $y=?$

3. Trnisformation $u f^{\prime}(x)=0$ to $x=g(x)$ Uumonetreve two muthoxu for such a transfoxmatzon. Fry method 1 , set $f(x)$ wad add x to both sides to obtain $x \operatorname{mg}(x)=x+f(x)$.

Incercise: Compute $g(x), g(-1)$, shat $g(2) f 0 x f(x) w x^{2}-x-2$.
For method 2 , net $f(x)=0$, divide both sides by x, and subtrsct both sides from x.

Case 1: $g(x)=x+r(x) / 0$ wheres of 0
Case 2: $\quad \mathbf{g}(x)=\operatorname{sert}\left(x^{6}-f(x)\right)$
Case 3: $\quad g(x)$ w $\operatorname{det}\left(x^{2}+f(x)\right)$
4. Hethod of Iterntion to Hind a Zaro of $\mathrm{E}(x)$. Dencribe the Iterative process $x_{k+3}=g\left(K_{k}\right)$
 Compute $g(x)$ in terms of x. If $x_{0}=5 / 4$, what is x_{1} and x_{2} Computation for succeeding iterations is provided until the student is convinced of convergence.

Tell the student that the choice of both the iterstion function and the atarting value may be crucial for convergence.

Exercise 4B: For $I(x)=x^{2}-x-2$, choose the itexation function $g(x)=x+f(x)=x^{2}-2$. The student selects $x_{0}>2$ and observes successive iterations. The student exits from the iteration cycle when convinoed
of divergence. This exercise may be repented as oftwh an the $n t u d e r t$ wishes.

$x_{k+1}+e\left(x_{k}\right)$ with converge if x_{0} is epproprimtely chowen in an intexval. (A, B) so that
a. $\boldsymbol{A}<\mathbb{P} \subset \mathrm{B}$
b. $\quad g(P)=P$
c. $g(x)$ and $g^{\prime}(x)$ are cortinuous on (A, B)
a. $\left|E^{\prime}(x)\right|<1$ on $\left(A, \sigma^{\prime}\right)$

Bxercise 5A: Check the ronditions for convergence if $f(x)=x x-e^{-x}$, $\mathrm{A}=\mathrm{O}, \mathrm{B}=1$, and $\mathrm{g}(\mathrm{x})=\mathrm{x} \cdot \mathrm{t}(\mathrm{x}) / \mathrm{y}$

Exercise 5B: Let $f(x)={ }^{\prime}: A=0, B m$, and $g(x)=(x-f(x)) / 3$. Which condition is not matialied?
6. Tests for Conversence. Fxplain the nee of the abenjote error
 student is given three mequencan of itmates and asked to determine the value of k which satisfies the two error tests.

Lesson 2: Linear Itexntion--Theory

verpose

Establish and verity sufficient condthons for convergence of an Iteration $x_{k+1} \mathcal{m}^{\prime g}\left(x_{k}\right)$ (see Conte, Theorem 2.1). Define linear convergence as lim $e_{k+1} / e_{k} \rightarrow$ constant where $e_{k} m x-P$. Kstablish linear convergence when Theorem 2.1 is satisfied.

1. Heyien of the Nethod.
 $(0, P I / 2)$. Check the following conditions for $g(x)=x-r i x)$
a. $g(P) m p$
b. cont muity of $s(x)$ and $g^{*}(x)$ on ($0, \mathrm{PT} / \mathrm{Z}$)
c. $\left|s^{4}(x)\right|<1$ on $(0,2 \pi / 2)$
2. Ininear Iteration Theorem. State the theoren (sae Conte, Theorm 2.1).

The stwient participatien in the prowe of this theorem througk mulkiple choice type remponses. The nean-value theorem is atated if the student has difficulty in mppining it during the proof.

Excrise 2A: Jut, $f(x)=x-e^{-x}$ and $g(x)=x-f(x)$. The student must check each of the conditions for converpence if x_{c} ie chonen in (.3, 755).

The stadent articipatios in the aerivation of $\lim _{k \rightarrow \infty} \frac{e_{k+2}}{\theta_{k}}=c^{\prime}(P)$ through multipie choice typu titesse.

Exercise 3A: Let $g(x) m\left(x^{2}=f(x)\right)^{\frac{1}{2}}$ with $f(x)=x^{2}-e^{1-x t}$ and $P=1$. The student checks all conditions to assure convergence of $x_{k+1} m\left(x_{k}\right)$ for $x_{0} \in(0,2)$. The atuitent chooses any x_{0} in (0,2) differant from 1 and request, successive iterations to observe the values $x_{k} ; \omega_{k} \cdot{ }^{n} / e_{k-1}$. The student exits from the iteration cycle when he is convinced that $x_{k} \rightarrow 1, e_{k} \rightarrow 0$, and $e_{k} / e_{k-1} \rightarrow 8^{\prime}(1)$.

Leason 3: An Acceleration recianique

Purpose

Desire Aitken's 8^{2} - foxmula. Demonstrate man fire prove titet
 late geomelick saquences to the exrox sequence $e_{k}-x_{K}-$ Pow a Inearly convergent iteration $\left\{x_{\mathbf{k}}\right\}$. Demonatrate the asymptotic behavion of $\left\{\mathrm{m}_{\mathrm{k}}\right\}$ as a geometric sequence, thoreby making Aitken's formula an acceloration technique.

Proxequisites

It 14 esauntinl. that tixe student, of fulliar with the material in Lesmons 1 and 2 , in particular, the $\begin{gathered}\text { affigeiency condition for convergence }\end{gathered}$ and the meaning of "Iincar convergence".

Lesson Outilne

Exerejse 1A: What is the voine for M in the goometric mequence $(2,3 / 2,9 / 8,27 / 32, \ldots)$ र compute $\overbrace{4}$ romputem $\lim _{k \rightarrow \infty} e_{k}$

Exorcise 1B: Compute M for the geonetric sequence $\{3,-6 / 5,12 / 25,-24 / 125, \ldots\}$. Comput: $\lim _{k \rightarrow \infty} e_{k}$,
 $\lim _{k \rightarrow \infty} x_{k}$.
2. Aitken's 8^{2}-Process. Define Aitken's 8^{2}-process as $x_{k}^{\prime}=x_{k-2}-\left(x_{k-1}-x_{k-2}\right)^{2} /\left(x_{k}-2 x_{k-1}+x_{k-2}\right)$ 。

Frexcise 2A: Consider the sequence $\left(x_{0}, x_{1} \ldots\right.$) given by $\{3,5 / 2,17 / 8, \ldots\}$. Compute x_{2}^{\prime} and x_{3}^{\prime}.

Point, out that the sequence in Exercise as cian wrent wim $(1+2,1+3 / 2,1+9 / 8, \ldots\}$ where $(2,3 / 2,9 / 8, \ldots)$ is a gecmetric mequence with Ma3/4.

Exercise: Compute lina χ_{k} for the sequence in Exercine 2A.

\{3.01,3.001,3.0001,3.00001,...\}. Jse Aitken' formula to compute x_{k} ' for any $k>1$.

Exexcise: The sequence in Bxercise $3 B$ can be writton am $\left\{3+e_{0}, j+e_{1}, 3+e_{6}, \ldots.\right\}$ where $\left\{e_{k}\right\}$ is a geometric sequence. Compute M, $\lim e_{k}$, and $\lim x_{k}$.

Formally prove that Altien's 8^{2}-process will give the exact limit,
 sequence with $-1<k<1$. The student partictyaties in this proof through both constrveted xespones and multipie choice type items.
3. Aiticen's 8^{2}-Progers Applied to Linear fitmration. Point out to the student that the sequences ot errors $\left[m_{k}\right\}$ is asymptotically geometric for a lineraiy convergent iteration $\left(x_{k}\right)$.

Exercise 3 A . Let $f(x)=x^{2}-x-2, g(x) m x-f(x) / x=1+2 / x$, and $x_{0}=1.5$. The student progresses through the computation on linear iteration by observing the values $x_{0}, x_{1}, x_{2}, x_{2}^{\prime}=x_{3}, x_{4}, x_{5}, x_{5}^{\prime}=x_{6}$, etc. The stivent exits from the iteration cycle when he feels he has observed the effect of acceleration.

Exercise 38: The atudent progresses through the linear iteration in Exercise $3 A$ without acceleration and obwerves the values X_{k}, e_{k}, and e_{k} / e_{k-1}. The student is asked to observe convergence of x_{k} to $2, e_{k}$ to 0 , and e_{k} / e_{k-1} to $g^{\prime}(2)=-\frac{1}{2}$, noting that in the latter itarations
$e_{k} \pi\left(-\frac{1}{2}\right) e_{k-1}$, i. 4 , approximately geomertric.

Leemon f: Moutor's Mathod and Guadratic Fonvoryance

Purpose
 tinuity conditions of f, s^{*}. and f^{-1} which will immux a convergemi, ituration for the proper choice of x_{0}. Pxove that these conditions ar aufticient for convergence by uaing the conditions in the linear Itermtion theorem (sen Liesmon 2). Define quadratic convergence by ${ }_{k+1} / 0_{k}^{2} \rightarrow$ constant. Prove that Nowton's iteration converges quadratically with $e_{k+1} / 0_{k}^{2} \rightarrow g^{\prime \prime}(P) / 2$.

Prequisite:

The atudent is expected to know the linear Itoration theorem and the meaning of linear convergence from Litmion 2.

Lesmon Outline

1. Hewton's Method. Define the iteration function as $g(x)=x-f(x) / f^{\prime}(x)$.

Exercise 1A: Write Newton's iteration function for $f(x)=x-3 \sin (x)$.
Exexcise 2A: Write Newton's iteration function for $f(x) m i n(x) \cos (x)$.
Exercise 3A: Let $f(x)=x^{2}-3$. Write Nowton's iteration function $g(x)$, compute $g(\operatorname{SQRT}(3))$, and write the iteration equation $x_{k+1}(j)$. The student then chooses a starting value $1<x_{0}<2$ auch that $x_{0} \notin \operatorname{qant}(3)$ and is asked to observe that the number of correct decimal places approximately doubles with aach iteration. The student exits from the iteration cycle when he is satisfled.

In pr-paration for a convergence pione the student has the option of reviming a itatement of the Lineair Tteration theorem.
 sumptions tihat P is a simple rere of $f(x) ; f, X^{\prime \prime}$, and f^{*} are continnous on (A, B) where $A<P<B$; and $g(x) m x-f(x) / f^{\prime}(x)$ is the iteration function. Through multiple choice items, the atudent purticipates in the proot that $g(x)$ satisfies the Linear Iteration theorem for some mmerric interval about P.

Exercise 2A: $f(x)=x^{2}-00 x$ has a zaro at pro. Name an interval.
 tervai ($\mathrm{A} 2, \mathrm{BR}$) contained in (A, BL) on which g and g are continuous and $A Z<P<B 2$. Name an interval (A, B) contained in ($A 2, B 2$) so that $A<P<B$ and on which $\left|g^{\prime}(x)\right|<1$.
3. Quadratic Convergence of Newtom's Method. The general assuraptions given in Saction 2 ait restated. The student is asked to recall the error equation $e_{k+1}=\xi^{\prime}\left(z_{k}\right) e_{k}$.

Exercise: To establish linear convergence, the student is anked to compate $\lim \left(e_{k+1} / e_{k}\right)$. Through multipic choice items, the student participates in the proof that $\lim \left(e_{k+1} / \rho_{k}^{2}\right)=g^{\prime \prime}(P) / 2$, establishing quadratic convergence.

Exexcise 3A: For $f(x)=x e^{x}$, write Newtern's $g(x), g^{\prime}(x), g^{\prime}(p)$ where $P=0$, and an interval (A, B) so that $A<P<B$ and on which $\left|E^{\prime \prime}()\right|<1$. The student may select any x_{0} from (A, B) and obsarve the values for x_{k}, e_{k}, e_{k} / e_{k-1}, and e_{k} / e_{k-1}^{2} for $k=1,2, \ldots$ During the itexation, the student is asked to observe $e_{k} / e_{k-1} \rightarrow 0$ and $e_{k} / e_{k-1}^{2} \rightarrow g^{\prime \prime}(p) / 2$. The student may exit from the iteration cycle when satisfied.

Leseon 5: The Secunt Mithod

Puxpone

 $e_{i k} / e_{k-1} \rightarrow 0, \theta_{k} /\left(e_{k-1} e_{k-2}\right) \rightarrow$ conatmat, and $e_{k} / e_{k-1}^{2} \rightarrow 0$ when $f_{0} t^{\prime}$, and are continwous, thereby eatablinbing the convergence rate as better than linear but not as good as quadratic.

Prerequisites

Knowledge of Newton's method, linear convergence, and quadratic convergence is assumed.

Lemmon Gatilne

1. The Iteration Equetion. Define the aecant mathod by replacing $f^{\prime}\left(x_{k}\right)$ in Newton's iteration by an approximation to obtain $x_{k+1}-x_{k}-f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right) /\left(f\left(x_{k}\right)-x^{(}\left(x_{k-1}\right)\right)$.

Irexcise 14i Let $f(x)=x^{2}-x-2$. Wite the neannt method.
Define the simplified form $x_{k+1}=\left(x_{k-1} r\left(x_{k}\right)+x_{k} f\left(x_{k-1}\right)\right) /\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)$.
Exurcise 2B: Write the secant racthor when $f(x)$ mcos (x).
2. Convergence of the Secent Moihod.

Exercise 2A: $f(x)=1+1 / x$ has a mimple zers st Pwal. Wxite the secant method. If $x_{0}=-.5$ and $x_{1}=1.5$, compute x_{2} " Computation for aucceeding iteratione provides the values of $x_{k}, 0_{k}, e_{k} / e_{k-1}, 0_{k} / \omega_{k-1}^{2}$ and $e_{k} /\left(e_{k-1} e_{k-e_{2}}\right)$. The atudent obmerves that $e_{k} \rightarrow 0, a_{k} / e_{k-1} \rightarrow 0, a_{k} / e_{k-1}^{2} \rightarrow \infty$, and $e_{k} /\left(e_{k-1} e_{k-2}\right) \rightarrow R$ conetiant. The student exits from the itoration cycle when he is satisfied.
 value with $K+1 i m\left(e_{k} /\left(e_{k-1} e_{k-2}\right)\right.$).

The sturdent is told what, is the arta of convargence of the mexamo method when $f^{\prime \prime}, f^{\prime}$, and $f^{n \prime}$ are continuous.

Exercise 2B: $f(x)=x^{2}-3$ has a simple zaro at Pmight (3). Computat $\lim \left(e_{k} /\left(e_{k-1} e_{l_{n-s_{6}}}\right)\right.$ and write the iteration equation for the secant method. The studext selects valiver fox $x_{0}>0$ and $x_{1}>0, x_{0} \neq x_{1}$ "Compin tation for succeeding itarations provider values for $x_{k}, 0_{k}, 0_{k} / \Theta_{k-1}$, e_{k} / e_{k-1}^{2}, and $o_{k} /\left(e_{k-1} e_{k-2}\right)$ to demonstrate convergerice is better than linear, but, not quadraic. The student may sixi from the iteration cycle when $\left|x_{k+1} x_{k}\right|<.5^{5} 10^{-9}$.

Lesson 6: Simultaneous Equations-Mewton'a Mothod
Purpose
Derive Newton ${ }^{\text {n }}$ method for two stmulthaneuns equations in two veriables. State sufficient conditions for quadratic convergence and illuatrate both the method and convergence properties through examples.

Praxequisites

The student nuzit e ramiliar with Taylor expansions for functions of two variables, Newton's method for functions of a single variable, and quadratic convergence.

Lesson Plan

1. Review of Partial Derivatives--Motation. State the definition of partiai derivatives through the second order using a notation acceptable for the KSR-33 Teletype.

The student works two miscellaneous exercises for practice in computing partial derivatives.

 Write expersions in teran of x, y, x_{0}, and y_{0} for $f_{x}^{\prime}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+$

2. Derivation of Newton's Method for Functione of Two Variables.

 State that the motivation is to find a simultaneous solution of $r(x, y)=0$ and $s(x, y)=0$.Exercise 2A: Find a simultaneous zero of $f(x, y)=(x-1)^{2}-y$ and $g(x, y)=(x-1)+y^{2}$.

Derive Newton's equations

$$
\begin{aligned}
& f_{x}^{\prime}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}^{\prime}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=x-f\left(x_{0}, y_{0}\right) \text { and } \\
& g_{x}^{\prime}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+c_{y}^{\prime}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=-g\left(x_{0}, y_{0}\right)
\end{aligned}
$$

using truncated Taylor series. The student participates through multiple choice type items.
3. Newton' S Iteration Formulas. Derive the iteration formulas

$$
x_{k+1}=x_{k}-\left(f_{y}^{\prime} \in f_{y}^{\prime}\right) / J \text { and }
$$

$$
y_{k+1}=y_{k}-\left(g f_{x}^{\prime}-P_{g_{x}^{\prime}}^{\prime}\right) / v
$$

where $J=f_{x}^{\prime} s_{y}^{\prime}-g_{x}^{\prime} f^{\prime} y^{\prime}$. The student participates through multiple choice items.

Exercise 3A: $f(x, y)=x^{2}+y^{2}-1$ and $g(x, y) w x y$ are dimultaneously zero at $(0,-1)$. Write $f_{x}^{\prime}, f_{y}^{\prime}, g_{x}^{\prime}, g_{y}^{\prime}$, in terma of x and y. Write J in termas of x_{k}, y_{k}, and J. The atudent chooses starting values $-.25<x_{0}<.25$ and $-1.25 \leqslant y_{0}<-.75$. Succeeding iterations are computed and the atudent is aaked to observe the quadratic convergence. The atucient exits from the

1teration cycie whon sxtizazimes.
4. Quadratic Convergence of Howton"n Mothod. State uurliciants con-

 in R, and (x_{0}, y_{0}) is chomen surficiontly close to the mimultancous zero of I and g.

Exercise 4A: Check all conditions for quadratic convergence for f and g given in Exercise 3A.

Leason 7: Polymomiel Equations-Real Rootis

purpose
Dafine the nested multiplication algorithm to evaluate a polynomial, stress its economy, and Liluntrate how the algorithm can be restated in terms of recursion formalas. Pormally, dersw this mathod of waluation and show that the last recursion formula $b_{0} x_{y} y_{i}+a_{0} m(2)$ is the same as the b_{0} in the division algorithm for polynomiels $\frac{q(x)}{x-2}=q(x)+\frac{1}{2-z}$. Derive the result $p^{\prime}(z)=q(z)=c_{1}$ where the recursion formulas may ve used for $q(x)$. Define Newton's method for polymomials as $x_{i n+1}=x_{k}-b / c_{1}$. Pxerequisites

The student ahould be faniliar with the division alkorithm for polynomials from elementary alsebra and Newton's method for functions of a single variable (see Lesson 4).

Lesson Outhine

1. Evaluation of Tolynomale by Nattad Multiplication. Using a fourth degree polynomial $p(x)$, dewonatrate the neated form and the
recursion rormulas to find $p(x): p(x)=a_{4} x^{4}+\ldots+m_{0}=\left(\left(a_{4} x+a_{5}\right) x+m_{2}\right) x+$ $\left.a_{1}\right)_{x+a_{0}}, b_{4}=a_{4}, b_{3}=b_{4} 2+a_{3}, \ldots, b_{8}=b_{1} x+a_{0}$.
 and the recursions formulas fox y_{i}, \ldots, b_{0} needed bo sveluate ofty,

Point out the number of multiplications and addition needed to evaluate a polynom al by this method.

Exercise: For zand, write the numeric valuen for b_{h}, \ldots, b_{o} in
Brercise 2A. Confirm $b_{0} m p(2)$.
Deacribe the general algorithm for an nth degree polyncmial.
Exercise 1B: Let $p(x)=06^{5}+a_{5} x^{5}=a_{4} x^{4}+a_{2} x^{2}+a_{1} x+a_{0}$. Hote that $a_{3}=0$.

2. Review-Division Algorithm for Polynomiais. If $p(x)$ is a polynomial of degree $n>1$, then $p(x) /(x-m)=q(x)+b_{0} /(x-z)$ where $q(x)$ is a polynomial of degree $n-1$ and b_{0} is the raminder.

Exercise $2 A$: Let $f(x)=x^{2}-3 x-4$ and $z=-1$. Write $q(x)$ and compute b_{0}.
Enercise 28 : Let $p(x)=x^{3}-x^{2}-x+1$ and $z=2$. Write $q(x)$ and b_{0}. Compute $p(z)$.
3. Formal Derivation of the Meatied Miltiplication Al noritam. Formally prove that $b_{0} x p(z)$ by substituting $q(x) m b_{n} x^{x_{1}-I_{1}} \ldots+b_{1}$ into $p(x)=q(x)\left(x-z_{1}\right)+b_{0}$ where $p(x)=a_{n} x^{n}+\ldots+a_{1}$. The student participates by equeting coefficients and solving for the b_{i}.
4. Evaluation of the Dex. vative $p^{\prime}(z)$ of a Polymonial. Formally prove that $p^{\prime}(z)=q(z)$ and demonstratc the use of recursion formula to find this value. The student participates by writing the appropriate expressions for $c_{n}=b_{n}, c_{n-1}=c_{n}{ }^{2+b} b_{n-1}, \ldots, c_{1}=c_{2}{ }^{z+b_{2}}{ }^{m} \rho^{\prime}(x)$.
5. Kewton's Kethod for Folynemiels. Define Mewton's method using

Exercise 5A: Let $p(x) n x^{3}-6 x^{2}+1 x x-6 \operatorname{mad} x_{0}=1 \times 1$. Compute $b_{3}, b_{c "}$
 provided. The student exits from the itermion cycle when metiontwi.

Lesson 8: Difficulties in Findine Roots of Pozmomials

Puxpoise
Revinw Fewton"a mathod for polyngials. Demonetwate the behevior of N enton's method in the case of double roots in terros of 10 an of aignificant digita, Demonntrate the concept of instability in polynomiala of high degree.

Prerequimiter

The student is expected to know Newton"s method, Inear and quadratic convergence (see Lesmons 2 and 4), and Newton's method for poly nomiale.

Lesson Outilne

2. Review or Nuwtovis Metor for Polynomiala. Derine the metinod.

Exexcise LA: Let $p(x)=x^{3}-5 x^{3}+4$. Sperify the courficients a_{1}, the recuraion fomulas for the b_{1}, and the recursion formulas for the c_{1}.
2. Behavior of Nawton's Method in the case of Double Roots. Point out that $p(x)$ in Exercise 1 A has a double root at $x-2$. In other words $(x-2)^{2}$ is a divisor of $p(x)$.

Exercise: For $p(x)$ in Exercise la write an expresmion for $p^{\prime}(x)$ and evaluate $p^{\prime}(2)$. Wxite an expression for $p(x) / p^{\prime}(x)$.

Point out that $p\left(x_{k}\right) / p^{\prime}\left(x_{k}\right) \rightarrow 0$ in theory but eignificance is lont

In actupl armatation ot the ratio stree $\mathrm{m}^{\prime \prime}\left(\mathrm{X}_{\mathrm{k}}\right) \rightarrow 0$. Thuw the conver gence is alinear and accuracy is poor.
 atudent obsexves guccessive iterationa, notiag the Linear romverisunc and the locis of genificance bayond the aixth decimal place. whe stio. dent muat obsexve at least seven iterations and them may exit from the iteration eycle whes satis:ied.
2. The Concept of Instability. Define instability an the condition where samil, chareses sa the coefficients of $p(x)$ produce large changer in the roots of $p(x)$.

Exercise 3A: Inet, $p(x)-x^{7}-28 x^{6}+322 x^{5}-1960 x^{4}+6769 x^{3}-13132 x^{2}+$ $13068 x-5040, v(x)$ ass exact roots at $1,2,3 . \ldots .7$. The mudent eelacts a mtarting value $\left.\sim_{0} 7\right\rangle \times x_{0}<7.25$ and observes the comvergence to root unt11 $\left|x_{k+1}-x_{k}\right|<.5 \cdot 10^{-8}$.
 The studert obseryes the difference in the soots of the two polynomial.s.

The student is uiven the option or repeating bxercises 3 A and $3 B$ as a group as often as desired.

Legeon 9: Pecuraion Foxmula for Dividin a Polvasial
 by a Qupfratic Factor and Review of Cowide Arithmetic

Puxpose

Review the alcoritim for dividing a polymomial by a quadratic polynomial $p(x) /\left(x^{2}-8 x-T\right) \operatorname{m}(x)+r(x) /\left(x^{2}-S x-T\right)$ where deg $\left.p(x)\right) \min$ implies $\operatorname{deg}(q(x))=n-2$ and $\operatorname{deg}(x(x)) \leq$. Derive an algoritim in terme of recursion formulas for computing the coefficienta of $q(x)$ and $r(x)$. Review complex numbers. Prove that a quadratic polyncmial ($x-z$) $(x-\bar{z})$
ham real coefficients. All convepte in tinds leanon are preparatory for Lemzon 10.

$$
x_{x} \text { quieqtas }
$$

The student should be familiar with tive racuraion formalam for dividinc polynomial by a linear factor (aee Lesmon 7).

Lommon OutLine

1. Division Algorithe Define the tactorisation of $g(x)$ as $p(x)=4(x)\left(x^{2}-S x-T\right)+x(x)$ where deg $(p(x))-a>1$ implies deg $(q(x)) / m-2$ and $\operatorname{deg}(x(x))<2$.
 $x^{2}-2 x+1$. Compute $S, T ; q\left(x^{\prime}\right), r(x), \operatorname{deg}(q(x))$, and $\operatorname{deg}(x(x))$.

Axercise 1B: Inet $g(x)=x^{5}+x^{4}+x^{3}-x^{2}-x-2$ and the divinor be $x^{2}+x+1$. Ccmpute $S, T, q(x), x(x), \operatorname{deg}(q(x))$, and deg(x(x)).

Deseribe the general forms $p(x)=a_{n} x^{n}+\ldots+a_{0} q(x)=b_{n} x^{n-2}+\ldots+b_{2}$ and $r(x)=b_{2}(x-S)+b_{0}$.
mxercise 1C: Compute $b_{4} \ldots \ldots b_{0}$ from the $q(x)$ and $r(x)$ in Fxercise 1A.

Exercise 1D: Compute b_{5}, \ldots, b_{0} from $q(x)$ and $r(x)$ in Exexcise 15.
2. An Alsorith for computing the Coefficientis of $g(x)$ and $r(x)$. Derive the recuraion formulas for computing the b_{i} as $b_{n} m_{n}, b_{n-1} \operatorname{lam}_{n-1}+$ $S b_{n}, b_{i}=a_{1}+S b_{i+1}+T b_{1+2}$ for $1 m n-2, \ldots, 0$. The student paxticipates by equating coefficienti and supplying the right hand sides of the recursion formulas.

Exercise 2A: Let $p(x)=2 x^{5}+x^{4}+3 x^{3}+2 x^{2}+x+3$ and the divisor be $x^{2}-S x-T$. Compute b_{5}, \ldots, b_{0} for the confficients of $q(x)$ and $r(x)$ uning the recursion formules.
 S. T, $q(x)$, and $r(x)$
3. Conglex Numera, Comiex Conjugatmer Dergha Roote. Define

Exexcist 34 Let $z=6.3+4,5 y . \quad$ Compute $\operatorname{He}(z)$ and Imag(z).
Deflue the complex conjugate of z by $\overline{z m} u-i v$.
Exercise 3B: For $z=6.3+4,51$, compute Re($\%$) and Luan (7).

Exercise: For $x^{2}-3 x-T=(x-2)(x-\bar{z})$, compute S and T. If $x=u+i v$, comm pute S and T in texms of u and v.

From the last exerclae prove that, 1 , quadrutic polynomial $x^{2}-8 x-T$ has complex roote 4 and \ddot{z}, then S and T are real.

Ixercise 30 : $p(x)=x^{3}-x^{2}+2$ hem a complex root $z=1-1$. yame another complex root of $p(x)$.

Point out that somplex roots come in pairs for any polynomal with real coefficients.

Finding Complex 7exos of a Polynciai
Purpose
Describe the Fewtom-Bairstow method and its relationmip to molving
 equations which when solved wili yield an approximate solution. Darive the recursion formulas for evaluating the partial derivatives in Rewton's equations. Demonstrate the iterative process.

yrerequisktex:

The student is axpected to know all concepts in Lemson 9, Howton's method for systems of equations (see Lenson 6), quadratic convergence, and partial derivativen.

Leamon Outline

1. Reriew of the Divicion Al foritime for Dividing by a quadratic

 Polynomial. Define the recursion formulam.Exercise 1A: Let $p(x)=x^{4}-2 x^{3}+x^{2}+2 x-2$ with an approximate root $z=1+$ 91. Write min approximate guadratic tmetor $x^{2}-S_{0} x-T_{0}$, miviaing $p(x)$ by thin quadratic factor, compute b_{4}, \ldots, b_{0} for $q(x)$ and $r(x)$.

Foint out that $r(x) \neq 0$ since the divimor was not exact and that the motivation will be to anceanaively improve the divisor in order to anninilate $\mathrm{r}(\mathrm{x})$.
2. The Hewton-bairatow Method for Inoroving a Qumaratic Factor. Dascribe the problem by stating that $r(x) m_{2}(x-S)+b_{0} \equiv 0$ is equivalent to finajus S and T so that $b_{2}(S, T) \mathrm{m}_{0}(\mathrm{~S}, \mathrm{~T})=0$. Using Newton' method in Leason 6, an approximate molution for S and T can be found by solving Hevton's equations

$$
\begin{aligned}
& \left(b_{1}\right)_{S}^{\prime}\left(S-S_{0}\right)+\left(b_{1}\right)_{T}^{\prime}\left(T-T_{0}\right)=-b_{1} \\
& \left(b_{0}\right)_{S}^{\prime}\left(S-s_{0}\right)+\left(b_{0}\right)_{T}^{\prime}\left(T-T_{0}\right)=-b_{0}
\end{aligned}
$$

If we have a method fur evaluating the partials at (S_{0}, T_{0}).
Exercise ca: Let $p(x)=a_{4} x^{4}+\ldots+a_{0}$. To comprate $q(x)$ and $r(x)$, we use the recuraion formulas $b_{4}=a_{4}, b_{3}=a_{3}+S b_{4}, i_{1}=m_{i}+8 b_{i+1}+T b_{1+2}$ for im2, 1,0 . Compute $c_{5}\left(b_{4}\right)_{S^{\prime}}^{\prime}$. In terms of the b_{i} and any previoucly computed c_{j}, write $c_{4}=\left(b_{3}\right)_{s}^{\prime}, \ldots, c_{2}=\left(b_{0}\right)_{s}^{\prime}$. similarly compute
$d_{i+2}=\left(b_{j}\right)_{t}$ for $1=4, \ldots, 0$
Demonstrate how the computation of the o_{1} and d_{1} foxm mimilar mete of ecursion formulas and that astual crmputation of the th is not necessary. So Xewton's system brecomes

$$
\begin{aligned}
& c_{2}\left(S-S_{c}\right)+c_{5}\left(x-T_{0}\right)=-b_{1} \\
& c_{1}\left(X-S_{0}\right)+c_{2}\left(T-T_{0}\right)=-b_{0}
\end{aligned}
$$

Exercise 2B: $p(x)=x^{4} 6 x^{3}+199 x^{3}+(x-1$ has a eomylex maro rear 9+101. Compute an approximate quadratic factor of $p(x)$. $x^{2}{ }_{0} 8_{0} x-m 0_{0}$ Compute b_{4}, \ldots, b_{0} for the coerticiente of $q(x)$ and $r(x)$. Compute the values c_{4}, \ldots, c_{i} for the partinl derivatives. Bolve Mewton's eyntem for improved velues $S_{1}=S$ and $x^{\prime} T$,

Demeribe the computational procedure for the Rewton-Bairatow mothod in termes of the general iterates S_{k} and T_{k}.

Exercise: Automatic computation in provided fox muccessive interam tions fo. Exerclse 2 . The student exita from tho iteration cycle when he is satisfied.

Leason 11: The Solution of Linear Syatere by Elitination

Purpose
Introduce Gaussian elimination as a systematic procedure for solving a linear system of equations. Describe tise method of pivoting and demonetrate its usefulness as a control over the propagation of round-off error.

Prerequisites

This lesson is not dependent on any previous leasen.

1. Representation of Lingex Byater Ey tha Augantwa Matrix Demonstrate the formation of the augented matrix $A \mid B$ for the innear syatem Axwb.

Erercise la: The atudent forms the augented matrix for a 3 , , linear systma.
2. Gaunaian Rlimination. Describe the row oparitions:

- a. (ROW i) wimplaced by (Row i) H M times (Row j)
b. Interchange (Row i) and (Row j)

Bxerclise at For 3×3 example, the ntudant derines the wilues of 1, J, and M for the rirst row operation to systematically senerate zeros in positionm a_{21}, a_{31}, and \mathbf{a}_{22}. For each step, the student mume epecify new row values for the augmented matrix. The atudsnt solven the mytem by back-aubatitution.
3. Pommation of anuenian Multipliers. Present the atudent with a general 3×3 system of equatione.

Exercise 3A: Wxite the formulas for the multipliers M to form zeros in the $a_{21}, a_{z 1}$, and a_{32} poritions. Pormally solve for x_{3}, x_{2}, and x_{1} in the triangular system.
4. Gaussian Elimination with Fiyoting: Justify the method of interchanging rows in order to avoid zero divisors.

Ixercise 4A: The atudent performs the necesancy interchanges in a 4×4 system.

Exercise 4B: The student uses Gavasian elimination with pivoting to molve a 3×3 syatem by specifying the necessary row operation liated in Section 2 along with the asmociated values of i, j, and M.
 never exceed the value 1 when pivoting is umed, theraby liniling stability to arithmetic prosems.

Lesmoin 12: Eraination of Detexuinants and Matrix Inversion

Purpose

Demonstraite the use if Gausian olimination fin evaluntong determ minants and inverting mitrices.

Prerequisites

Knowledge of a.11 concepts in lesson 11 is amsumed.

Smoun Guti 2ne

1. Evaluation of Detemainante y Usinc Gausgian Elimination.

Irexclise: The student computeb ohe determinant of a conoral 4×4 triangular matrix.

State thai Gauselan miminetion may be used co first refuce a matrix to trianguar form and then the determinant, is the product of ita diagonal elements (with possiblm ndiustment of the sign).

Exarcise 1A: The studeat sumetites the row manchans needed to reduce 3×3 system to triangular form. During the procens the atudent request.s cne snterchange of rows. The student computes the determinant of the intermediate matrices after exch row operation and obsarves that the magnitude of the determinant is preserved but an interchange of rows changes the algebraic sign.

The general rules on s, gn changes are $\mathrm{s}^{4} \mathrm{ed}$
Exercise 1B: Suppose an $n \times n$ matrix A in reduced to the triangular matrix B such that $\operatorname{det}(B)=I$. What is $\operatorname{det}(A)$ if three interchanges were
required, it aix intercangea wore required, and if k interchanges were requirad?
2. Review of Katrex Muxtiplication. The student is given the option of omitiving this section.

If the student elects to study this section, the method of muls,is. plication is demonstraied for 3×3 matirices. The ameral formulaa are stated.

Exercise 2A: The student forms the product of two 3×3 matrices.
Demonstrate multipication of a 4×1 vector by a 4×4 matrix and state the general formulas

Exercise 2B: The student formas the product of a 4×4 matrix times a 4×1 yector.
3. Matrix Invercion by Uaing Gpuation Elimination. Define the inm varse of a ganeral $n \times n$ matrix as that $n \times n$ matrix A^{-1} so that $A A^{-1}=I$

The student may optionally skip Exercise 3A.
Exercise 3A: The student multiplies two matrices, one of which is the inverse of the othex.

Illustrate the general form of the coofficient watrix magmented by the identity matrix and deacribe the elimination procese for simultaneous reduction of the n systems.

Exercise 3B: The student reduces a 3×3 matrix (augmented by the 3×3 identity matrix) to trianguiar roxm by specifying the necessary row operations. The student solves for the unknown in each ayatom by back-aubstitution to form the elements of the inverse matrix.
4. Use of the Inverre Matrix to Solve Jinear Syation. Doscribe the method of solving the aysteri $A x=b$ by forming A^{-1} and solving $x=A^{-1} b$.
 3B to solve bystien Axm for several buwetors.

Point out the umefulness of this mathod for solving a eet of linear syateme $A x x_{1 B}, A x=b_{2}, \ldots, A>b_{n}$.
2. Invergion of III-Cotdtitoned Matrices.

Exarcise 5A: The student solves a 3×3 111-conditioned watam equatiens $A x a b$ and checics his mppoximatic inyerse B by obmerving that the olments of $B A$ are in exror in the seventh decimal place even though all computations ware paxformed with firteen digit precinion.

Lesegn 13: Irrors and Conditioning

Puxpone

Demonatrate the ponsible effects of propagation of round-of exror and loms of simificance in Gausisn elimination. Introduce eoveral techniques for detecting an ill-conditioned linear systam and demerite possible remedial action.

Prexequisites

The atudent, $1 . s$ expectert to knote all methods introfucen in Lessons 11 sad 12 involving Gausaian elimingtion with and without pivoting, computation of determinants, and inversion of matrices.

Lesson Outilne

1. Inl-Conditioned Systems. Define on 111.mcondititoned system Axmb as one in whtch amall changes in the coofficients lead to large changes in the solution.

Incercise 1A: The atudent solves two ayatena Axmb where in the
first,

$$
A=\left[\begin{array}{cc}
.99 & 1 \\
1 & .99
\end{array}\right]
$$

and in the second,

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & .99
\end{array}\right]
$$

For both cases bacolum vector (1.99,1.99). The studient obmerves that a change of 10^{-2} in a coefficient will give rise to a completely different solution.

Describe the method in Exercise 14 an one way to tent for an 111conditioned system.
2. Mormalized Detorainant as a Meanure of the Confficient Matriz. Describe the philosophy of a "noxmalized" datarminant and state the computational formulas for as a x aytem.

Exarcise 2A: Compute the normnifged Aetanainurit of

$$
A=\left[\begin{array}{cc}
.99 & 1 \\
1 & .99
\end{array}\right]
$$

Exercise $2 B$: Compute the normalized determinant of

$$
A=\left[\begin{array}{cc}
3.1 & 4.2 \\
6.2 & -1.8
\end{array}\right] .
$$

3. Computation of nomplal for the Gemeral n.x n Matrex. Describe the method and state the computational formulas for norm $|A|=|A| /\left(\alpha_{1} \ldots\right.$ $\left.\alpha_{n}\right)$ where $\alpha_{1}=\left(\sum_{j} a_{i j}\right)^{\frac{1}{2}}$.

Hercise 3A: The student computes aown \mid A \mid for

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

and notes that when the rows of A are mutualiy orthogonal, the system is "well-conditioned".

Exercise 3B: The student specifies the row operations needed to reduce

$$
A=\left[\begin{array}{lll}
.24 & .36 & .12 \\
.16 & .20 & .26 \\
.12 & .16 & .24
\end{array}\right]
$$

to triangular form, ard computen $|\mathrm{A}|, \alpha_{1}, \alpha_{2}, \alpha_{3}$, and norm $|\mathrm{A}|$.
The student is asked to observe a third indication of inlothondtioning in fxercise $3 B$, that is, the loss of one or mose orders of magnitude in the plotal elements dumse vire reanction to triangular form.
4. Iterative Process to Improve the Numerical Solution ot an ILl. Conditioned System. Def'ine the residual vectory as rab-Ax' where x^{\prime} is the numerical solution to Axsb.

Exercise 4A: The student computen the residual vector for the case where

$$
A=\left[\begin{array}{cc}
.99 & 1 \\
1 & .99
\end{array}\right], b=\left[\begin{array}{l}
1.99 \\
1.99
\end{array}\right] \text {, and } z=\left[\begin{array}{c}
1.99 \\
0
\end{array}\right] .
$$

Derive the exror system Aewr where emx - x^{\prime} and show how a new approximation $x^{r}=x^{\prime}+e$ can result in an improved solution.
 the exroc syotran to find the approximate error e^{9}. The otudent compiates an improved solution $x^{\prime \prime \prime} w^{\prime \prime}{ }^{\prime \prime \prime}{ }^{\prime}$.

Exercise 4C: The student is given the $x x$ syatem

$$
A=\left[\begin{array}{lll}
-5.795856 & 5.59,4805 & 6.775443 \\
-1.102148 & 8.7379886 & 2.9751895 \\
-5.6710341 & 5.6330547 & 6.681 .6331
\end{array}\right] \mathrm{rm}\left[\begin{array}{l}
-47.34645 \\
-1.613064 \\
-46.37922
\end{array}\right]
$$

The student specifies the row operations nemded to raduce the abgariter? matrix to triangular form, computes $\alpha_{L}, \alpha_{\varepsilon,}, \alpha_{3}$, and noxm $|A|$, comrutes the approximate solution $x_{j}^{\prime} y^{\prime \prime}, x_{y}$ by mack-substitation, computes the residual vector $r^{\prime}=b-A x^{\prime}$, solyes the errox syotem $A e^{\prime}: x x^{\prime}$ fry e^{\prime}, and computes the improved solution $x^{\prime \prime}=x_{i}^{\prime}+e_{i}^{i} l=1,2$ and 3 ,

Lesson 14: Iterative Methods for Soiution of Innoar Symtems

Pumpose
Describe the methons of simutaneous dispiacements mis successive displacements. Illustrate how is reordering of the equations may be needed to insure nonzero diagonel elements.

Prerequisites

The student should be familiar with iterative methods for functions of a single variable (see Lesson l.).

Lesson Outilne

1. Method of Simultaneoxs Digplacements.

Exercise 1A: The student 1 s given a 3×3 Iinear syatem Axmb. He solves for x_{1} in the ith equation for $1=1,2,3$.
 varisbles ayptaring to the right of the "m" sign and a mbsaxift k+i. bo the variables aypearing on the left. The sturdent in asked to rote that three iteration equations have been foxmed.

Exercise : B : The stount aelects initial approximaticus $)^{(0)}$, $x_{2}^{(0)}$, and $x_{3}^{(0)}$. Computothon for successive itexations $x_{1}^{(k)}, x_{i}^{(k)}$, and $x_{3}^{(k)}$ are provided. The student exits Irom the Iteration cyole when be is arnvinced of convergence to the the somution ot Axmb.

Exercise 1C: The student foxms the iteratlon equations for the method of simultaneous displacements for a general 3% system.

Descxibe the method of simultaneous displacements for the general n \times n system.
2. Matix Fomulation of the Method of Simultaneous Dimplacement: Describe the structure of the iteration matrix C where $x^{(k+1)}{ }^{(k x}{ }^{(k)}+d$ is the method of simultaneous displacementa.

Exercise dA: The gitudent constructs the matrix C tra a giver. 4×4 system of equations and observes that the alagonal elementis are zere and the off-diagonal elexents are of the form $c_{1 j}=\operatorname{man}_{1 \mathrm{j}} / o_{2 i}$. The student anstuncts the vector d and writes the iteration equations using the C-matrix and d.-vector.

Exercise B : For a $3 x$ systom of equations with zero diagonal elements in the coefticient matrix, the student reorders the system so that the method of simultaneous displacements can be applied,
2. Method of Successive Displacements. The method of succesive displacements is described for a 3×3 system.

Rxarcise 3A: The etudent conmruts the fteration equations for a given 3×3 system.

Exercise 3B: The student repenti Exercise 3 h lut a different, 3×3 aystera.
4. Gxitexta ior Terminating an iaration. Demcribe the abaolute error test and relative axror cest.

Lesmon 15: Convergence of Itera: ve Kothods for Linear Syatema
Purpor
Formulate the exror equations frx the methon of simulturiciun displacements and derive the columen sum criterit for convornence baced on tine iteration matrix. Dewonstri;e how the row sum criteria for the iteration matrik may be wan to estrolish converyence. Doncribe the relation of time row and coliman sum anteria of the itoxation matrix to the diagonal dominance of the oxigir.tl coefficient matrix.

Prerealifiten

The student must know both me;iods described in Lesson $1 k$.

Lesson cortiline

1. Review of the Method of ELnultaneous Dimplacempats.

Exercise 1A: Given a $3 x 3$ system of equations $A x=b$, the student constructs the iteration equations, the iteration matrix C, and the vector a for $\left.x^{(k+1)}\right)_{x C x^{(k)}}+\mathrm{d}$.

2. Formation of the Rirror Equations.

Exercise 2A: The student constructe the iteration matrix C and vector d for a general 3×3 mysuan.

For a general 3×3 symtem formally derive the error equationa for the error system $e^{(n+1)} C e^{(y)}$. The student participates throuch multiple choice items and constructed responaes.
2. Colum Sum criteria as Surticiant Conditione For Converames. Formally prove that $1+\Gamma_{1}\left|c_{i, j}\right|<1$ for $j=1, \ldots, n$, then the method of simultaneons dispizcoments will converge. The student participates through maltiple choice type iteras.

Exerciso 3 : For given; $x \cdot 3$ system, the student constructs the C-matrix, computes the column sums, and decides whether or not the iteration will converge.
4. Kow Sum Criteria as Surficiert Conditions For Conversence. The row sum criteria $\sum_{j}\left|c_{i f}\right|<1$ for $1=1, \ldots, n$ in described.

Exercise 4A: Fox a given 4×4 system, the student constructs the C-matrix nod computes the row shme.

The stadent is toid if either the row sum or colvon sum conditions are satistied, then the method of simultaneous displacersents will converge.
5. Dominance Terts for Convergence and Review of Lesson. Describe the row sum and column sum teats in terms of the diagonal dominance of A for the system $A x=1)$.

Exercise 5A: The student teats diagonal dominance or a given 4×4 system.

Lesion 16: Numerical Differentiation

Purpose

Introduce the concept of the order of an approximation and the nutation $O\left(h^{k}\right)$, Derive $g(h)$ ond $g\left(h^{2}\right)$-approximalsions to $f^{\prime}\left(x_{1}\right)$. Darive an $O\left(h^{\prime}\right)$-approximacion to $f^{\prime \prime}\left(x_{1}\right)$. Demonatrate the computational difficulties of these approximations in the presence of round-off error.

Prerequiajeses

The lesson depends only on knowleage of lessons A and B.

Lesson Outiline

1. Oxder of an Approximations Derine an aporoximetion 4 (h) to

$h \rightarrow 0$
Exexcise 1A: Given the Taylor formula $f\left(x_{0}+h\right)=r\left(x_{0}\right)+h f^{\prime \prime}\left(x_{0}\right)+h^{\prime \prime} x^{2}(z) / 2$ where $x_{0}<\%<x_{0}+h$, determine the order of $D(h)=\left(f\left(x_{0}+h\right)-f\left(x_{0}\right)\right) / h$ if $A=f^{\prime}\left(x_{0}\right)$.

Introduce the notation $D\left(h_{i}=O\left(h^{k}\right)\right.$ as meaning the approximation $D(h)$ is of ordex h^{k}.

Exercise 1R: Conaider the two Thylor formulns

$$
\begin{aligned}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+h^{9} f^{\prime \prime \prime}\left(x_{0}\right) / h^{3} f^{\prime \prime \prime}\left(a_{2}\right) / 6 \text { nnd } \\
& f\left(x_{0}=h\right)=f\left(x_{0}\right)-h f^{\prime}\left(x_{0}\right)+h^{2} f^{\prime \prime \prime}\left(x_{0}\right) / 2 h^{3} f^{\prime \prime \prime}\left(z_{2}\right) / 6
\end{aligned}
$$

where $x_{0}<z_{1}<x_{0}+h$ and $x_{0}-h<x_{2}<x_{0}$. Subtract the second formula from the first and let $D(h)=\left(f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right) / 2 h$. Find an expression for $f^{\prime}\left(x_{0}\right)$ $D(h)$.

Exercise JC: Tn Exercise $1 B, f^{\prime}\left(x_{0}\right)-D(h)=-h^{2}\left(f^{\prime \prime}\left(z_{1}\right)+f^{\prime \prime \prime}\left(z_{g}\right)\right) / 12$ and, nstiming continuity of $f^{\prime \prime \prime}, \lim _{h \rightarrow 0}\left(\left(f^{\prime}\left(x_{0}\right)-D(h)\right) / h^{2}\right)=-f^{\prime \prime}\left(x_{0}\right) / 6$. What is the order of $g(h)$?
2. Functions Tabulaiced on an Equally Spaced Set of Points. Define equally apaced points with spacing h.

Exercise 2A: Given function values on an equally spaced set of points x_{0}, \ldots, x_{5}, the student computes the values of $D(h)=\left(f\left(x_{1}+h\right)-\right.$ $\left.f\left(x_{i}\right)\right) / h$ and $D(i i)=\left(f\left(x_{i}+h\right)-f\left(x_{i}-h\right)\right) / 2 h$ for values of 1 .

Discuss the need for more knowledge about the function f prior to establishing error bounds on $D(h)-f^{\prime}\left(x_{1}\right)$.
 tion to $f^{\prime}\left(x_{i}\right)$ as $\left.D(h)=m\left(x_{i+1}\right) \cdots\left(x_{i}\right)\right) / h$. Show that $|e(h)|=\mid x^{\prime \prime}\left(x_{i}\right)$ $-D(h)\left|<(h / 2)_{\text {max }}\right| f^{\prime \prime}(x) \mid$ for $x \in\left[x_{0}, x_{n}\right]$. The student purbicipates through multiple choice items.

Exercise 3A: A table of vaiues tor $f(x)=x^{3}-2 x$ is presenter por $x_{1}=\cdots, 1,0, .1, .2, .3$. On $\left[x_{0}, x_{4}\right]$, what is max $|e(h)|$? At x_{0}, whet is $D(h) ?$

Define the $O\left(h^{2}\right)$-approximation to $x^{\prime}\left(x_{1}\right)$ an $D\left(h_{1}\right)\left(f\left(x_{1+1}\right)+f\left(x_{1 \ldots 1}\right)\right.$ i (2 h). Find an axpression for $e(h)=f^{4}\left(x_{1}\right)-D(h)$ from Exerciae ip. The maisat participates through multiple cholce items.

Exerofse 3B: Uning the table in Exarcise 5A, find a value of x_{s} for which the $O\left(h^{2}\right)$-approximation to $\mathrm{D}\left(\mathrm{F}_{\mathrm{y}}\right.$) cannot be opplied. Using $f(x)=x^{3}-2 x$, compute $\max |e(h)|$. Compute the actual errors at $x_{1} m 0$ and $x_{3}=.2$ and observe that they are lesa than wax $\| e(h) \mid$.

Construct a table of $f^{\prime}\left(x_{i}\right), D(h)=\left(f\left(x_{i+1}\right) \cdots\left(x_{i}\right)\right) / h$, and $D(h) m$ $\left(y^{\prime \prime}\left(x_{1+1}\right) \cdots\left(x_{1-1}\right)\right) /(2 n)$ for $x_{1}=0, x_{2} m .1$, and $x_{3}=.2$ and have the student observe the accuracy.

Derive the $O\left(h^{\prime}\right)$-approximations to $f^{\prime}\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{n}\right)$, as $X(h) w$ $\left(-3 f\left(x_{0}\right)+4 f\left(x_{1}\right)-f\left(x_{2}\right)\right) /(2 h)$ where $f^{\prime}\left(x_{0}\right)-D\left(h^{\prime}\right) \operatorname{mh}^{\prime \prime} f^{\prime \prime}\left(z_{0}\right) / 3$ and $D(h) m$ $\left(3 f^{\prime}\left(a_{n}\right)-4 f^{\prime}\left(x_{n-1}\right)+f\left(x_{n-2}\right)\right) /(2 h)$ where $f^{\prime}\left(x_{n}\right)-D(h)=h^{2} f^{\prime \prime \prime}\left(z_{n}\right) / 3$. The student paxticipates through munt tple choice type items.

Exexcise 30: Using a set of cabulated values for the function $f(x)=x^{2}+2 x$, the student computes $D(h)$ for $f^{\prime}\left(x_{0}\right), \max \left|f^{\prime}\left(x_{0}\right)-D(h)\right|$, and $D(h)$ for x_{n}.

Define the $O\left(h^{2}\right)$-approximations of $f^{\prime \prime \prime}\left(x_{i}\right)$ for $1<i<n$ as $D 2(h)=$ $\left(f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)\right) / h^{2}$ where $f^{\prime \prime}\left(x_{i}\right)-D 2(h)=-\left(h^{2}\right) f^{n n}\left(z_{i}\right) / 12$.

The student, participates through multigle chatse tyma itesan,
Exercise 3D: UEing a set of tabulated values for $f(x) w x^{5}+2 x, c o m-$ pute $D 2(h)$ for x_{3}. Find max $\left|f^{\prime \prime}\left(x_{3}\right)-D(h)\right|$. For whet valuea of x_{3} wils. D2(h) not apply?
5. Computational Accuracy of Mumorical Difforentiation. Introduce once again the twe operators $D(h) m\left(f\left(x_{i+1}\right) \cdots f^{\prime}\left(x_{i-1}\right)\right) /(2 h)$ mad $D 2(h)=\left(f^{(}\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{1-1}\right)\right) / h^{2}$ with their respective exror formulas.
 $D(h))$? Assuming continuity of $f^{\prime \prime \prime}(x)$, what is $14 m\left(f^{* \prime}\left(x_{i}\right)\right.$-Da(h)) ?

Discuss the possible effects of round-off error on the $11 m$ its in Exercise 5A.

Exercise 5B: For $f(x)=e^{x}$, the student calculetea $f^{\prime}(0)$ and $f^{\prime \prime}(0)$. The student then specifies various values of h, letting h tend to 0 , and the values of $D(h)=\left(e^{h}-e^{-h}\right) /(2 h), D 2(h)=\left(e^{h}-2+e^{-h}\right) / h^{2}$ are printed. The student observes that round-off exror eventually lominates the error and notes a local optimum accurecy for $D(h)$ acound $h=10^{-5}$ and a local optimum accuracy for $\mathrm{v} 2(\mathrm{~h})$ around $\mathrm{ha}=5 \cdot 10^{-3}$.

Lesson 17: Extrapolasion to the Linit

Purpose
Introduce the concept of extrapciation to the limit for differentiation by elimination of lower order terms in the expresaion for the error. By numerical examples, demonstrate the power of this techniqua up to the point where round-off dominates the error.

Prerequisites

Total familiarity with the concepts in Lesson 16 is assumed.

1. Review of the Onder of Nif Axpocinnition. Rentate the definition of $O\left(h^{k}\right)$.

Exercise IA: The student deformine the oxder of the bastu dutcex entiation operator to be used in this lefson, $D i n)=\left(f\left(x_{1+1}\right)-1\left(x_{1-1}\right)\right) /(x h)$.

Dexive the following properties of 1 rdex h^{k} operators, $A(h)$ and $\left.B(h): \quad A(h)+B(h) m O i^{k}\right)$ and $M \cdot A\left(h^{j}\right) O\left(h^{k}\right)$;hese M is a comstant. The student perticipates through constructed risponses.

Exercise 13: Sixppose $11 m\left(z_{i}\right)=\lim (w)=x_{0} a B h \rightarrow 0$ and $f(x)$ and an derivatives in queation are continuous. Frurthexmore, mupose $A(h)=$ $h^{2} t^{m+}\left(z_{i}\right) / 2$ and $B(h) m^{2} f^{n \prime}\left(w_{i}\right) / 6$. Cownte the order of the following approximations: $A(h)+B(h), h \cdot B(h), A(k!) \cdot R(h), A(h / 2)$, and $A\left(h^{4}\right) / B(h)$ where $\mathrm{f}^{\prime \prime}\left(x_{0}\right) \neq 0$.
2. Simple Extrapolation for Differantiation. From the Tivior formulad of $f\left(x_{0}+h\right)$ and $f\left(x_{0}-h\right)$ expanded coout x_{0}, express

Exercise 2A: Compute the vaiues of the coefficients a_{0}, \ldots, a_{5} in texms of h. The resulting formula can be written as $D(h) m f^{f}\left(x_{0}\right)+$ $h^{2} f^{\prime \prime \prime}\left(x_{0}\right)+O($ what? $)$. What is the order of $D(h)$? Replacing h by $h / 2$, $D(h / 2)=f^{\prime \prime}\left(x_{0}\right)+a_{0} h^{2} / 4+0($ what? $)$.

Using the formulas $D(h)=f^{\prime}\left(x_{0}\right)+a_{2} h^{2}+O\left(h^{m}\right)$ and $D(h / 2)=f^{\prime}\left(x_{0}\right)+a_{2} h^{2} / 4+$ $O\left(h^{4}\right)$, form $D L(h / 2)=(4 D(h / 2)-D(h)) / 3$.

Exercise 2B: What is the order of $D 1(h / 2)$?
Review the significance of obtaining the hicher ordex approximation D1 (h/2).

Exercise 2C: The student is given a wt of tobulated points for $f(x)=x^{5}$ from $x_{0}=.3$ to $x_{4}=.7$ with epacing . 1 . At the point $x_{2} e^{x, 5}$, ust $h=.2$ to compute the values $D(h), D(h / 2)$, and $D 1(h / 2)$. Compare theae numbers with $f^{\prime \prime}(.5)=0.3125$.
3. Repeated Extrapolation for Differentiation. Asuming $f(x)$ hax continuous derivatives through the seventh ordez;, write the expansions

$$
\begin{aligned}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\ldots+h^{\prime} f^{(7)}\left(z_{0}\right) / 5040 \\
& f\left(x_{0}-h\right)=f\left(x_{0}\right)-h f^{\prime}\left(x_{0}\right) r \ldots-h^{7} f^{(7)}\left(z_{1}\right) / 5040
\end{aligned}
$$

and express

Exercise 3A: Compute a_{5}, a6, and a_{7} in terms of h. Letting $b_{1}=f^{n n}\left(x_{0}\right) / 6$ and $b_{2}=f^{(5)}\left(x_{0}\right) / 120$,

$$
D(h)=f^{\prime}\left(x_{0}\right)+b_{1} h^{2}+b_{2} h^{4}+0(\text { what? }),
$$

$$
D(h / 2)=f^{\prime}\left(x_{0}\right)+b_{1} h^{2} / 4+b_{2} h^{4} / 16+0(w h a t ?) \text {, and. }
$$

$$
D(h / 4)=f^{\prime}\left(x_{0}\right)+b_{1} h^{2} / 16+b_{2} h^{4} / 256+o(\text { whas? })
$$

Compute c_{1}, e_{2}, and c_{3} for each of the simple extrapolations

$$
\begin{aligned}
& D I(h / 2)=(4 D(h / 2)-D(h)) / 3=2^{\prime}\left(x_{0}\right)+c_{2} h^{2}+c_{2} h^{4}+O\left(c_{3}\right) \text { and } \\
& D I(h / 4)=(4 D(h / 4)-D(h / 2)) / 3=f^{\prime}\left(x_{0}\right)+c_{1} h^{2}+c_{2} h^{4}+O\left(c_{3}\right) .
\end{aligned}
$$

Exercise 36: Compute the value of M so that $\mathrm{D} 2(\mathrm{~h} / 4)=(\mathrm{M} \cdot \mathrm{DI}(\mathrm{h} / 4)-\mathrm{DI}(\mathrm{h} / \mathrm{C})) /(\mathrm{M}-1)$ is an $0\left(\mathrm{~h}^{6}\right)$ approwimation to $\mathrm{f}^{\prime}\left(x_{0}\right)$.

Esercise 3C: The sturient is given tabulated values of $f(x)$ m x^{7} for $x_{0}=1, x_{i}=.1(1+2), i=1, \ldots, 5$, and $x_{6}=.9$. For $h m .4$ and $x_{3} m .5$, compute the approximations $D(h), D(h / 2), D(h / 4), D I(h / 2), D I(h / 4)$, and $D 2(h / 4)$ and compare these values with the true solution $f^{\prime}(.5)=.109375$.
4. Foxregolation to the Limit fox jifforentiation. Symoify the general formulas and the conetruction of a triangulax table for extrapolation to the Iimit based on n tabulal ed walves of $\pm(x)$.

 putes the approximatione $D(h), D(h / 2), D(h / 4), D(h / 8), D 1(h / e)$. $D 1(h / 4), D 1(h / 8), D E(h / 4), D 2(h / 8)$, and $D 3(h / 8)$ and compazes these values with the true solution $\mathrm{f}^{\prime}(.3)=-260.670833 . \ldots$

Fxplain the procedure for estinating the number of coxreti dinitim in an approrimation by comparing auccessive diagonal ortixies in the extrapolation table. Point out the dangers of tryling to axtrapolate beyond the bounds of round-off exror.

Iesson 18: Iumpical Integration--The Trapacoidal Rule

Puxpose
Introduck the notation for the integal sign. Develop the necessary background theory in order to develof the error formula for the trapazoidal rule. Define the traperoldal wule and doseribe its gemetric significance. Formalily derive an expression for the error formula and demonstrate how maximum bounds might be placed on the error. Prexequisites

This lesson is not dependent on the corcepts in Lessons 1-1.7. Howm ever, a study of Lessons $1-17$ will add to the medurity of the atudent in the area of numerical approximations and contribute to the overall performance. If the stulent i s to progress to Lesson 19 , then the conceptes in Lessons 16-18 will, be neaded.

Lesson Outline

1. Motation tor the Interral. Define the teletype notation for Integral $(f(x) ;[A, B])$ to denote $\int f(x) d x$. The student becomes famijuar A with the notation by finding the definite integral of several fluactions.
2. Second Theorem of the Mean for Integrais. State the theorem: If $f^{\prime}(x)$ and $g(x)$ are continuous on the interval $[A, B]$ and if $g(x)$ doan not change sign on $[A, B]$, then there is a number $A<z<B$ no

$$
f_{A}^{B} f(x) g(x) d x=f(x) \int_{A}^{B} g(x) d x .
$$

Exercise 2A: Suppose $f(x)=L N(x), g(x)=1 / x$, and we with to tind ${ }^{B}$ $\int_{A}^{f}(x(x) / x) d y$ where $[A, B] m[1, e]$. Does $g(x)$ change sign on $[A, B]$? Apply the above theorean to expresa the integral in terms of z. Find the exuct value of the integral. Specify the value $1<z<e$ which yields the equality of the second theorem of the mean.

Point out to the student that the exact value of z is usually rath known and that the future development will assums only its existence in (A, B).

Formally prove the second theorem of the mean. The student participates through multiple choice items.

Hxercise 2R: Let $f(x)=\cos (x), g(x)=\sin (x), A m 0$, and $B m P I / 2$. Does the second theorem of the mean guarantee the existance of $A<n<B$?

Exercise 2C: The student repents Exercise $2 F$ with the roles of $f(x)$ and $g(x)$ reversed and $[A, B]=[0, P I]$.

Exercise 2D: Let $h_{1}(x) m x_{B}^{3}, h_{2}(x) m e^{-x}, A=-1$, and B=1. Apply the mean value tineorem to express $\int_{A} h_{1}(x) h_{2}(x) d x$ in terme of z for some $A<z<B$.
3. Reviaw of Rolle's Theorem. State Rolle's theorem:

Let $f(x)$ be continuous on $[A, B]$ and differentiable on (A, B) and suppose $f(A)=f(B) w 0$. Then thexe is a point $A<z<B$ so that $f^{\prime}(z)$ wil.

Exerelise 3A: Let, $f(x)=x^{2}-1$ and $\left.[A, B]=1,1\right]$. Does Rolle's theorem appliyt Name point z in $[-1,1]$ sc that $f^{\prime}(z)=0$.

Hxercise 3B: Let $f(x)=\sin (x)$ and $[A, B]=[0, P I]$. Apply Rolle's theorem to find the value of a.

Point out to the student, that the exact value of z is usualy not know, but we will depend on Rolle's theorem for its existerea
4. Error in Iinear Approximation to Eunction. Geonetricaly deecribe the process of approximating a function $f(x)$ on an intervaz $\left[x_{0}, x_{1}\right]$ by the straight line $p(x)=f\left(x_{0}\right)+\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)\left(x-x_{0}\right) / h$ where $x_{1}-\mathrm{H}_{0}$ sh. Describe the objective as deriving wome exprossion for $e(x) m f(x)-p(x)$. Introduce the auxiliary function in the variable s with rixed x by

$$
g(s)=f(a)-p(s)-\left(3-x_{0}\right)\left(s-x_{1}\right)\left(f(x) p(x) Y_{1}^{\prime}\left(\left(x-x_{0}\right)\left(x-x_{1}\right)\right)\right.
$$

Bxercise ha: Compute $g\left(x_{0}\right) \in\left(x_{1}\right)$ sad $o(x)_{a} g(s)$ has at leant how many zeros in $\left[x_{0}, X_{1}\right]$? Assuring that $t(s), f^{\prime}(s)$, and $f^{\prime \prime}(s)$ ave contixuous, $G^{\prime}(s)$ has at lec,st how many zeros in $\left[x_{0}, x_{1}\right]$? $g^{\prime \prime}(s)$ has at least how many zeros in $\left[x_{0}, x_{1}\right]$?
 $x_{0} \ll x_{1}$. To form $f(x)-p(x)_{3}$ compute $g^{\prime \prime}(p)$ and evsinate at z. What is $P^{\prime \prime}(s)$ ard the second derivative with rempect to s of $\left(s-x_{0}\right)\left(0-x_{1}\right) ?$ Uaing $f^{\prime \prime}(z) m 0$, the student observes $0=f^{\prime \prime}(z)-2(f(x)-p(x)) /\left(\left(x-x_{0}\right)\left(x-x_{1}\right)\right)$ and $e(x)=f(x)-p(x)=f^{m}(z)\left(x-x_{0}\right)\left(x-x_{1}\right) / 2$.
5. Derivation of the Trepezoidal Rule and Ite Error. Define the traperoidal rule on the interval $\left[x_{0}, x_{1}\right]$ an $\int_{x_{0}}^{x_{1}} p(x) d x$ winare $p(x)$ is the atraight lline approximation to $f(x)$ given in Section .
mercise 5A: Write an exprension for $\int_{x_{0}}^{x_{1}} p(x) d x$ using $x_{1}-x_{0}$ wh to elime inate x_{0} and x_{1}. from your answer.
xre studert is told to note that $(h / 2)\left(r\left(x_{0}\right)+f\left(x_{1}\right)\right)$ is the area of a trapecoid ance hence the name trapezoidal rule. The otisient is told to review the error formula $p(x)-f(x)$ in Sestion 4 and the second theorem of the mean in Section 2 prior to discusaing a possible error formula for

$$
e(h)=\int_{x_{0}}^{x_{1}}(x(x)-n(x)) d x
$$

The error foxmila $e(h)=-h^{3} f^{n}(z) / 12$ where $x_{0}<z<x_{1}$ is derived. The wtudert participates through constructed remponses and multiple choice items.

Exerrcise $5 B$: Let $f(x)=e^{-x}, x_{0}=-1$, and $x_{1}=0$. Ccirpute $\int_{x_{0}^{1}}^{x_{0}} f(x) d x, \int_{x_{0}}^{x_{y}} p(x) d x, e(h)=\int_{x_{0}}^{x_{1}}(x(x)-p(x)) d x$ in terme of z ueing the error formula, and compute max $\left.\right|^{0}(h) \mid$ on $\left[x_{0}, x_{1}\right]$.
6. Garexal Application of the Ixapazoidal Rule. Discuss the process of dividing ar intexval [A,B] into n subdivisions of length $x_{1+1}-x_{i}{ }^{m}$ and sumaing the trapezoidal rules over all intervals to appromimate B $\int_{A}^{B} f(x) d x$. The student is required to write the form it the trapezoidal fule on the interval $\left[x_{1}, x_{i+1}\right]$.

Bxerc*se 6A: Suppose $f(x)$ win (x) and we wiwh orpoximate $\int^{1.5} f(x) d x$ by the trapezcidal rule. If hw.5, compute the numioer of subm divisican $n, x_{0}, x_{1}, x_{2}, x_{3}$, and the trapezoidal approximetion over $[A, B]$.

Deacribe the rrocess of finding the error for the trapeacidal rule, awning over the n intervale, to arrive at $e(h)=-h^{2}(h-k) f^{m}(z) / 12$.

Bxurcise 6B: Write the error in terme of h and 2 for the approximation to $f(x)$ in Exercise 6A. Choose spacing h so that max $|e(h)| \leq$ $.5 \cdot 10^{-4}$.

Point out to the student that finding a value of h bs bownding max $|e(h)|$ gives an upper bound on the needed number of subdivisions.

Leason 19: Romber Interration

Purpose

Develop the error formula of the trapezoldail rule an the erros expresaion $e_{1} h^{2}+a_{2} h^{4}+\ldots+0\left(h^{3 k}\right)$ depending on the continuity of the frunc. tion being integrated. Demonstrate the metlyod of extrapolation to the inint to increase the accuracy of the trapazoidal rule.

Prerequisites

The student should be femiliar with the basic differentiation for mulas Arom Lesson 16, extrapolation to the limit from lenson 17, and the treppezoidal formula from Lesson 18.

Lesson Outline

1. Introduction. Restate the trapezoidal rule and the associated errox formula. State that the first purpose of the lesson is to derive the trapezoidal approximations $T_{0}(h)=\int_{A}^{B} f(x) d x+a h^{2}+0\left(h^{4}\right)$ so thei $T_{0}(h / 2)=\int_{A}^{B} f(x) d x+a^{2} / 4+O\left(h^{4}\right)$. Extrapolation $T_{1}(h / 2) m\left(M \cdot T_{0}(h / 2)-T_{0}(h)\right) /$ ($M-1$) will then give an improved result. The atuient is asked to determine the needed value of M.
2. Basic Differentiation Formules. Derive the numarical differentiation formulas
a. $f^{\prime}\left(x_{0}\right)=\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right) / h-h f^{\prime \prime}\left(x_{0}\right) / 2-h^{2} f^{\prime \prime}\left(x_{0}\right) / 6+0\left(h^{3}\right)$
b. $t^{m}\left(x_{0}\right)=\left(f\left(x_{2}\right)-2 f\left(x_{1}\right)+f\left(x_{0}\right)\right) h^{2} h r^{+\prime \prime}\left(x_{0}\right)+o\left(h^{2}\right)$
c. $f^{m(x}\left(x_{0}\right)=\left(f\left(x_{3}\right)-3 f\left(x_{2}\right)+3 f\left(x_{1}\right)-f\left(x_{0}\right)\right) / h^{3}+0(h)$
by Taylor sexices expansions for use in the later derivation of the trapezoidal exror fomula. The student participates through const,meted reaponses to wetermine coefficients of the formulas and also through some multiple choice items.
3. General Formulation of the Trapezoidal Rule. State the Tavior fonuva
$f(x) \operatorname{lin}\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right) / 2+\left(x-x_{0}\right)^{3} f^{\prime \prime \prime}\left(x_{0}\right) / 6+\left(x-x_{0}\right)^{4} f^{\prime \prime N}(x) /$
4.

Exercise 3A: Integration of both sides of the above formula yields

$$
\int_{x_{c}}^{x_{1}} f(x) d x m a r\left(x_{0}\right)+b f^{\prime}\left(x_{0}\right)+c f^{\prime \prime}\left(x_{0}\right)+d f^{\prime \prime}\left(x_{0}\right)+e f^{\prime \prime \prime}(w) .
$$

The atulent writes the expressions for a, b, c, d, and e in terms of h.
The result of tixercise 3 A is

$$
\int_{x_{0}}^{x_{0}} f(x)=h f\left(x_{0}\right)+h^{2} f^{\prime \prime}\left(x_{0}\right) / 2+h^{3} f^{\prime \prime}\left(x_{0}\right) / 6+h^{4} f^{\prime \prime}\left(x_{0}\right) / 24+0\left(h^{5}\right)
$$

Replace $f^{\prime \prime}\left(x_{0}\right), f^{\prime \prime}\left(x_{0}\right)$, and $f^{\prime \prime \prime}\left(x_{0}\right)$ in the last formula by differentiation formulas a, b, and c to obtain

$$
\begin{aligned}
& \left.\int_{x_{0} x_{1} f(x) d x=h\left(f\left(x_{0}\right)\right.}+f\left(x_{1}\right)\right) / 2-h\left(f\left(x_{2}\right)-2 f\left(x_{1}\right)+f\left(x_{0}\right)\right) / 12 \\
& \quad+h\left(f\left(x_{3}\right)-3 f\left(x_{2}\right)+3 f\left(x_{1}\right)-f\left(x_{0}\right)\right) / 24+0\left(h^{5}\right) .
\end{aligned}
$$

The student participates in the replacement process throuch multiple choice items.

Wrate the general remult on $\left[x_{1}, x_{1+1}\right]$

$$
\begin{gathered}
\int_{x_{i}}^{x_{i+1}} f(x) d x=h\left(f\left(x_{1}\right)+f\left(x_{i+1}\right)\right) / 2-b\left(f\left(x_{1-1}\right)-2 f\left(x_{i+1}\right)+f\left(x_{1}\right)\right) / 12 \\
+h\left(f\left(x_{1+3}\right)-3 f\left(x_{i+2}\right)+3 f\left(x_{i+1}-f\left(x_{1}\right)\right)+0\left(h^{5}\right)\right.
\end{gathered}
$$

Sumang over n sutdivision of $[A, B]$, state the rasuit as

$$
\begin{aligned}
& \int_{A}^{B} f(x) d x=(n / 2) \sum_{i=0}^{n-1}\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right)-(n / 12) \sum_{i=0}^{n-1}\left(f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+f\left(x_{i}\right)\right) \\
& +(n / 24) \sum_{i=0}^{n-1}\left(f\left(x_{i+3}\right)-3 f\left(x_{i+2}\right)+3 f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)+\sum_{i=0}^{n-1} 0\left(n^{5}\right) .
\end{aligned}
$$

nxercise 3A: $(h / 2) \sum_{i=0}\left(f\left(x_{1}\right)+f\left(x_{i+1}\right)\right)$ is the trapmzoidal npproxt mation. The student detemines exprersions for $\sum_{i=0}\left(f\left(x_{i+2}\right)-i f(x, i+\right.$ $f\left(x_{i} i\right)$ using only tour termes and $\sum_{i=0}\left(\mathbb{T}\left(x_{i+3}\right)-3 f\left(x_{i+2}\right)+3 f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)$ ueing or p six traxms. $\sum_{t=0}^{n-1} O\left(h^{5}\right) w 0$ (what?)

Hxersise 3 A yields the expression

$$
\begin{aligned}
\int_{A}^{B} f(x) d x=P_{0}(h)-h\left(f\left(x_{0}\right)-f\left(x_{1}\right)+f\left(x_{n+1}\right)-f\left(x_{n}\right)\right. & / 12+h\left(f\left(x_{n+2}\right)-2 f\left(x_{n+1}\right)\right. \\
& \left.+f\left(x_{n}\right)-f\left(x_{2}\right)+2 f\left(x_{1}\right)-f\left(x_{0}\right)\right) / 24+0\left(h^{4}\right)
\end{aligned}
$$

Use the differentiation fomulas a and to fom Section 2 to eatablish

$$
T_{0}\left(i_{n}\right) \int_{A}^{B} f(x) d x-h^{2}\left(f^{\prime}\left(x_{n}\right)-f^{\prime}\left(x_{0}\right)\right) / 12+O\left(h^{4}\right)
$$

The atudent participates through multiple choice tipe itame.
4. Fomberg Integration--simple Extranolation. Review the firial result of Section 3, namely, $T_{0}(h) m+c^{2}+O\left(h^{4}\right)$ and $T_{0}(n / 2)=I+C^{2} / 4+O\left(h^{4}\right)$ where O is a constant and $I=\int_{A}^{B} f(x) d x$. Ask the atudent to write an $O\left(h^{4}\right)$-approximation to I in terms of $T_{0}(h)$ and $T_{0}(h / 2)$.

Exercise 4A: Suppose we wish to approximate $\int_{1}^{2}(1 / x) d x$. Using $h=.5$, write the expressiona for $T_{0}(h), T_{0}(h / 2)$, and the extrapolated result $T_{1}(h / 2)$.

2. Iember Interrationm-Rereated Extrepointiou. State without

 Corivation that a more general reauit can be obtained with more time and effort, numely,a. $T_{0}(h)=I+c_{2} h^{2}+c_{2} h^{4}+0\left(h^{6}\right)$.

Exercise: neplace h by $h / 2$ to obtmin $T_{0}(h / 2)=T+d_{1} h^{2}+d_{2} h^{4}+0\left(h^{6}\right)$. Determine the values for d_{1} and d_{2} ia texme of $h_{2} c_{1}$, and c_{2}. Feplace h by h / k in rormula a to obtain $\mathrm{X}_{0}(h / 4)=I+e_{2} h^{2}+e_{2} h^{4}+o\left(n^{6}\right)$. Determine the values for c_{2} and e_{2} " We now have the additional expressions:
b. $T_{0}(h / 2)=I+c_{2} h^{2} / 4+c_{2} h^{4} / 26+0\left(h^{6}\right)$ and
c. $T_{0}(h / 4)=x+c_{x^{2}} h^{2} / 16+c_{2} h^{4} / 256+0\left(h^{6}\right)$.

Use simple extrapolation on and b to obtain $I_{1}(h / 2)$ as an $O\left(h^{4}\right)$-approximition to I. Write the formula. Ume aimple extxapolation on b and c to obtain $T_{1}(h / 4)$ as another $O\left(h^{4}\right)$-approximation to I. Write the fomala. We now have the $O\left(h^{4}\right)$-appraximutions:
d. $T_{1}(h / 2)=I-3 c_{2} h^{4} / 4+0\left(h^{6}\right)$ and
e. $T_{1}(h / 4) m I-3 c_{2} h^{4} / 64+0\left(h^{6}\right)$.

Use aimple extrepolation on d and e to obtain an $O\left(h^{6}\right)$-approximation to I and wite the formula.
6. Romberg Interxation--lyxtrapolation to tin Limit. Explain the general procedure for extrapolation to the limit hy diapiaying a genaral. extrapoletion table and the method of camputing encries in the table. There is no student participation in this section.

Lesson 20: Numarical Integration--8impan's Rule

Puxpose

Derive stmpson': formula over an interval of length 2 h by siaple extrapolation using the trapezoidal rule. Introduce the error formula
for 8impan's rule for an intervai of length Ch. Derive the general form of simpon's rule and the associated error formia ower n intervals of length ail where $n=(B-A) /(2 h)$. Inlustrate how the general error car be bounded to determine an upper bound on n (or lower bound on h) for a apecified accuracy.

Prerequisites

The student must be familiar with the trapezoidal mile (mee Lesson 18) and aingle extrapolation (see Lenson 19).

Lesson Outline

1. Review of the Trapezoidal Rule. State the general fomula and asmosiatad error expression based on n subdivisions of the interval [A, B].

Exereise 1A: Write the trapezoidal aroroximation to $\int_{1}^{3} \cos (x) d x$ using nm 3 suivivisions. Write the exror formula.
2. Review of Romberg Integration--Simple Extrypolation. Strate the principle of simple extrapolation to obtain ar (h^{4})-approximation.
3. Simpson's Rule on an Interval of Length ali. Considex $f(x)$ on the interyal $\left[x_{0}, x_{2}\right]$ where x_{1} is the midpoint and $\left.h=x_{2}-x_{1}=x_{1}\right]^{-x_{0}} 0_{0}$ The student is sisised to write the trapezoidal approximation of $\int_{x}^{x_{P}} f(x) d x$ using nal sundivision and the trapezoidal rule for nac subativinions. The ctudent is asked to obsers that the two applications of the trapezoidal rule gives $T_{0}(2 h) m h\left(f\left(x_{0}\right)+f\left(x_{2}\right)\right)=I+4 h^{2}+O\left(h^{4}\right)$ and $T_{0}(h) m(h / 2)\left(f\left(x_{0}\right)+\right.$ $\left.2 f\left(x_{1}\right)+f\left(x_{2}\right)\right)=I+a^{2}+O\left(h^{4}\right)$. The student is asked to write the simpie ex. trapolation $T_{1}(h)=\left(4 T_{0}(h) T_{0}(2 h)\right) / 3$ in texins of $f\left(x_{1}\right)$ and h. The student is told that the resilting formula $S_{0}=(h / 3)\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ is known as Simpson's rule on an interval of length Ch .
4. Generel Form of gimpon's Rule. Simpson's ruze on $\left.{ }^{1} x_{0}, x_{2}\right]$ is atated as $s_{0}=(h / 3)\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ and on $\left[x_{2}, x_{4}\right]$ an $S_{2}=(h / 3)\left(f\left(x_{2}\right)+\right.$ $4 f\left(x_{3}\right)+P\left(x_{4} j\right)$. The atiudent forms the expression $S_{0}+S_{1}$ and thus ob serves the form of Simpoon's rule on $\left[x_{0}, x_{4}\right]$ with four subdivisions. The formula is generalized for the student for $2 n$ subdivisions.

Exercise 4a: How many evolumtions of $f(x)$ are required in 31 mpson's rule $\left.S_{n}=(h / 3)\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f f_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right) ?$ How many subdivisions of lengin h are needed? The student observes the even number of subdivisions and odd number of points.

Exarcise 4B: Suppose we wish to approsimate $\int_{0}^{3} \sin (x) d x$ by Simpsor's rute using four subdivisions. nu? ham the values of ($x_{1}, f\left(x_{1}\right)$) for $1=0, \ldots, 2 n$ are printed for the stwdent. $S_{L^{m}}$?
5. Exror Formula in Simpson's Rule. The arror formula $e_{i}(h)=-h^{5} 2^{n n}\left(z_{i}\right) / 90$ for $x_{21}<z_{1}<x_{21+2}$ is give: to the student without derivation as the accepted error in approximating $\int_{x_{21}}^{21+2} f(x) d x$ by simpson's ruif with two subaivisions. The exrors are sumaed over the n double length intervai.s to obtain $e(h)=s_{n}-\int_{x}^{x} f(x) d x=-h^{4}\left(x_{2 n}-x_{0}\right) f^{4 \prime \prime \prime}(z) / 180$ where $x_{0}<z<x_{2 n}$. The student participates through multiple choice type items.

Exercise 5A: Suppose we wish to estimate $\int^{2} \ln (x) d x$ by Simpain ${ }^{2}$ rule and we wish to choose h so that $\max |e(h)|^{1} 10^{-4} / 30$. Compute $f^{\prime \prime \prime}(x)$ and max $\left|f^{\prime \prime \prime}(x)\right|$ on $[1,2]$. Choose h so that $h^{4} \max \left|f^{* N n}(x)\right|(b-a) /$ $180<10^{-4} / 30$. Thus choosing $h<1$ means $n>$. The stucient may choose various values of n and the computer will print $\left(x_{i}, f\left(x_{i}\right)\right)$ for $i=0, \ldots, 2 n$
and Enisiapton's approximation.

Legeon 21: Wumarical Interretion of Ondinary Differential Equations by Taylor Series A wooximations

Purpose
Demeribe the Taydor Gigoxithme of ortera 1, 2, wad 3 for numerically approximating the solution to $y^{\prime}=\boldsymbol{f}(x, y)$ given an initial velue ($\left.x_{0}, y,\right)^{\prime}$. Demonstrate the Aepiciencij of luwer orier methods and ponaible comer plexity of higher order methods. In this leason, tise order of a particular metiod is not rigorously established.

Praxaquinites

The concepts trom previous lensons are not needed here although a atudy of numericel difforentiation and approximation of definite integrale (Leasons 16-20) werve as a good background.

Lesson Outline

1. Statement of the Initial Value Problem. Tescribe the wroblem as re of approximating the numerical values of $y(x)$ on an interval $[A, B]$, given the differential equation $y^{\prime}=f(x, y)$ with initial known conditions ($A, y(A)$).

Exercise 1A: Suppose $y^{1}=-e^{-x}+1$ with the known zondition $y(1)=e^{-1}$. Then $y(x)=\int y^{\prime} d x+c$ where c is the constant of intecxation. Compute $\int y^{\prime} d x$ and use the initial condition to determine thie value of c.

Point out to the student that not all functions can be explicitly integrated and thus we need approximation techniques.
2. Taylor's Algorithm of Order 1--Euler's Method. State the method as forming the Taylor formula $y(x+h)=y(x)+h y^{\prime}(x)+h^{2}{ }^{2}(x) / 2$ where
 mothod comen by dropping the $O\left(h^{2}\right)$-term and stepping acrose the interval $[A, B]$ by $y_{i+1}=y_{1}+h y_{1}=y_{i}+h f\left(x_{1}, y_{i}\right)$.

Exercise 2A: Suppose $y^{\prime} m(x, y)=-e^{-x}+i$ with $y(1)=e^{-1}$. Write the Taylor formula in torms of x, y, and z. Write the approximation formuia in terms of x_{1} and y_{1}, Starting at $x_{0}=1$ with step-stze hwo $2 y_{2}$ writ, y_{1} as the approximation to $y(1.25), y_{2}=? y_{3}=? y_{4}=$? The stident comparm the approximate values with the true solution computed to firtieen decimal figures.

Exercise 2B: Let $f(x, y)=x \cdot \sin (y)$ with $x_{0} x_{3}$ and y_{0} 1.5. Write Euler's method in terms of h, x_{i}, and y_{i}. Using $h=.1$, now many applications of Eulex's method is needed to approximate $y(6)$?
3. Review of Notation for Partial and Total Darivatives. Defran the notation to be used by the terminal for partial derivatives and give the definition of the total derivative of $f(x, y)$ with respect to x as $f^{\prime}(x, y)=X_{x}+y^{f}$.

Exersise 3A: Let $f(x, y)=x+y+x^{3} y^{2}$. Compute $f_{x}, f_{y}, f_{x x}, f_{y y}, f_{x y}$, and $f^{\prime}(x, y)$.

Exercise 3B: Suppose we have the differential equation $y^{\prime}=f(x, y)=\sin \left(x^{2}+y\right)$ where the solution $y(x)$ is a function of x. Compute $y^{\prime \prime}(x)$ in terms of x and y.
4. TEylor's Algorithm of Order 2. Derive the computational procedure $y_{i+1}=y_{i}+h r\left(x_{i}, y_{i}\right)+h^{2}\left(f_{x}\left(x_{i}, y_{i}\right)+f_{y}\left(x_{i}, y_{i}\right) f\left(x_{i}, y_{i}\right)\right) / 2$. The atudent participates through multiple choice type items.

Exercise 4A: Suppose $y^{\prime}=y(1-x) / x$ and $y(1)=e^{-1}$. Compute f_{x}, f_{y}, and $f^{\prime}(x, y)$ in terms of x and y. Write y_{i+1} in terms of x_{i} and y_{i}. The
atwient then apecifies varlous values of n as the sutal number of stept from $x_{0}{ }^{m l}$ to $x_{n}=3$. The computer repponde with valuen $\left(x_{1}, y_{1}, y\left(x_{1}\right)\right)$ for imo,....,n.
5. Thilor's Algorithm of Oxder 3. Derive the expremsion $T^{n}(x, y)=f_{x x}+2 f_{x y}+f_{y} f_{x}+f_{y y} f^{2}+f_{y}^{2}$ and the third order Taylor approximation.

$$
y_{i+1}=y_{i}+h f^{\prime}\left(x_{i}, y_{i}\right)+h^{\prime \prime} f^{\prime}\left(x_{i}, y_{i}\right) / 2+h^{3} f^{\prime \prime}\left(x_{i}, y_{i}\right) / 6 .
$$

The atwdent participates through multiple choice type itama.
Rxerctise 5A: Suppose y^{\prime} wxy and $y(0)=1$. What ia $f(x, y)$, $(x, y$. and $f^{\prime \prime \prime}(x, y)$? To apply the third order migorithm on the intervel [0,1$]$, the atudent apecifies various values of n. The computer responds with the numaricel values of $\left(x_{1}, y_{i}, y\left(x_{i}\right)\right)$ for $i=0, \ldots, n$.
6. Taylor's Algoritha of Order k. The general algorithem derived fros truncation of a Taylor series after the kth derivative is described for the atudent. It is pointed out that for $\mathrm{km}=\mathrm{l}$ (auler's Mathod.), an extremely smell step-size h is usually needed for remonable nccuracy: thus recuiring great deal of computational work. On the other hand, for large values of k, the higher order derivatives may be wigebraically eumberacme. For this reason, Taylor's algorithm of order kwe or 3 is populer. There is no student participation in this section.

Lesson 22: Second Order Runge-Kutta Mathods

Purpose

Derive the class of second order Runge-K methods as an alternative to the Taylor algorithm of order 2. Demonstrate that, at the cost of two evaluations of the function, no evaluations of derivatives are
needud. Demonstrate the numerical accuxacy of this clask for tine deprownd Euler's method and the Modified Euler's method. Derive the priacipmil error function for the Inproved Euler's method as the manor contributing factor and explain how ita magnitude may be difflcult to eatimate.

Prersquisites

The atudent is expected to know Taylor's algorithm of order 2 from Lenson 21.

Leason Outline

1. Introduction. State that the purpose of the lesson is to Aexive a clase of methods which axe equivalent in oxder to the Tayler algortumm of ordex 2 but need no evaluation of derivatives. Write the general formulas for second order Kunge-Kutta methods. There is no atudent participation in this suction.
2. Humerical Example of a Sacond Order Runge-Kutta Method. Define the apecial case

$$
\begin{aligned}
& y_{i+1}=y_{1}+.5\left(K_{1}+x_{2}\right) \\
& K_{1}=\operatorname{hr}\left(x_{1}, y_{1}\right) \\
& K_{2}=\operatorname{mf}\left(x_{1}+h, y_{i}+x_{1}\right)
\end{aligned}
$$

Bxercise 2A: Suppose $y^{\prime}=x y$. Compute K_{1}, K_{2}, and the computational formula y_{1+1}. Using $x_{0}=0, y_{0}=1$, and $h m .1$, compute y_{1}, x_{1}, y_{2}, and x_{2}. The exact values of the tuxe solution $y\left(x_{1}\right)=e^{x_{1}^{2} / 2}$ arsinted and the tudent compares the values.
3. Optimal Parameters $a_{k} b_{1} c_{\text {, and }} d$. State the overall procedure as comparing $y_{i+1}-x_{1}+a K_{1}+b K_{2}$, where $K_{1}=h f\left(x_{1}, y_{1}\right)$ and $K_{2}=h f\left(x_{1}+c h, y_{1}+d K_{1}\right)$.
with a Faylor expanaion of $y\left(x_{i+1}\right)$ to determine the best choice for a, b, c, and C. Give the etudent the general Taylor expanaion

$$
f(x+s, y y t)=f(x, y)+s f_{x}+t f_{y}+s^{2} f_{x x} / 2+m t f_{x y}+t^{2} f_{y y} / 3+\ldots
$$

Then
with mech and tedK ${ }_{1}$.
Bxerciae 3A: Determine a_{1}, \ldots, n_{g} in termat of h, c, d, and K_{1}.
Ask the student to observe that substitution of K_{1} mif in the xesulte of Hxercise 3 A yields.

$$
K_{2} / h=f+h c f_{x}+d h f f_{y}+h^{2} c^{2} f_{x x} / 2+h^{2} c d r_{x y}{ }^{t+h^{2}} d^{2} f_{y y} f^{2} / 2+0\left(h^{3}\right)
$$

Exercise 35: In the lant expression for K_{2} / h, collect texms in powerf of h to obtain $K_{2} / h m s_{0}+h s_{1}+h^{2} S_{2}+O\left(h^{3}\right)$. Write S_{0}, s_{1}, and S_{2} in terme of $c, d, t, f_{x,} f_{y}, r_{x x}, f_{y y}$, and $r_{x y}^{*}$

From the results of exercise 3B, the student is maked to observe that $K_{2}=h t+h^{2}\left(c f_{x}+d f_{y} f\right)+h^{3}\left(c^{2} f_{x x} / 2+c d f_{x y^{\prime}}+d^{2} f_{y y^{\prime}}{ }^{2} / 2\right)+o\left(h^{4}\right)$ and $y_{i+1}=y_{i}+h(a+b) f+h^{2} k\left(c f_{y}+d f_{y} f\right)+h^{3} b\left(c^{2} f_{x x} / a+c d f_{x y} f+d^{2} \sum_{y y} f^{2} / 2\right)+o\left(h^{4}\right)$. The mtudent is then anked is compare the last formule with the standard Taylor expansion for functions c one variable $y\left(x_{1+1}\right) m y\left(x_{i}\right)+h f+h^{2}\left(f_{x}+f_{y} t\right) / 2+h^{3}\left(f_{x x}+2 f f_{x y}+f_{y y^{\prime}} f^{2}+f_{x} y_{y}+f f_{y}^{2}\right) / 6+0\left(h^{4}\right)$.

Exercise 30: Comparing the last two expressions, the best accuracy is obtained for $a+b=$? bembde?

The atudent is anked to observe that the $O\left(h^{3}\right)$ terms cannot generally be equated and thus the local error is $O\left(h^{3}\right)$. Remarks are made about the total exror over the interval $\left[x_{0}, x_{n}\right]$ being $O\left(h^{2}\right)$, but a rigorous discusaion is not presented.
4. Ipecial Canan mod a Look at the Locmi Prror. Fine mtudent is anked to recall that the best values of a, b, c, and d satiefy $a+b=1$ and bembden

Define the Improved Euler's method as that AK-method for which ambert and cmami. Dejive the Locel error formula

$$
y_{i+1}-y\left(x_{i+1}\right)=n^{3}\left(x_{x x}+2 f_{x y} x+t_{y y} x^{2}-2 f_{x} t_{y}-2 t^{2} f_{y}^{2}\right) / 1 م+0\left(h^{1}\right)
$$

The student participates through constructed responses. the princifal.

Exercise 4A: Suppose $y^{\prime} m x y$. Find the principal error $g(x, y)$ tox the Improved Eulex's method.

Define the Modified Euler' method as the special case where am, bul, and cadxet

Bxercise 4B: Let $y^{\prime} x y \cdot m i n(x), x_{0} m P I$ and $y(P I)$ me. Appiying tio Modifled Euler's method, calculate K_{I} and K_{P} in terms of $h_{1} x_{i}$ and y_{i}. Write the general computiational formula $y_{i+1}=$? . The atudent may npeos y values of n and the computer will respond with the vilues ($x_{1}, y_{1}, y\left(x_{1}\right)$ m $e^{-\cos \left(x_{1}\right)}$) for $1=0, \ldots, n$.

The general inability to accurately estimate the local error is discussed.

Lesson 23: Numerical Interration, Errox Estimation, and Extrapolation

Purpose
Formally demonstrate that the total error $y_{n}-y\left(x_{n}\right)$ is $O\left(h^{2}\right)$ for the second order methods described in Lessons 22 and 23 , thus warranting the name "second order". State a more general orror formula and
show how extrapolation improves the numerical reault.

Prerequisites

The student is expected to be familiar with wecond order RungeIutta methods (Lesson 22), Taylor's algorithm of order 2 (Lenson 21), and aimple oxtrapolation (Leasona 17 anã 19゙).

Lesmon outline

1. Review or Second Order Yethods for tho Solutige of y mex (ax) Diaplay the computational formula for Taylor ingorithm of oxder 2. Irercise 1A: Let y^{\prime} mye ${ }^{x}$. Compute f_{x}, f_{y}, and the computational formale y_{i+1} "?

Display the computational formulas for second order Rumee-nutta methods.

Bxercise 1B: Using ambere and $c=1$, write the expreaniona for K_{1}, K_{2}, and the Improved Euler's method $y_{1+1}{ }^{m ?}$.
 K_{1}, X_{2}, and the Modified Euler's method y_{i+1} ? .
2. Estimation of the Cumulative Error $y_{n}-y\left(x_{n}\right)$. State the approximate solution as $y_{i+1} \mathrm{~m}_{1}+\mathrm{hT}\left(\mathrm{x}_{i}, y_{i}\right)$ and define $\mathrm{T}(x, y)$ for both Taylor's algorithm and Ruage-Kutte methods. Using the exact solution $y\left(x_{i+1}\right) m y\left(x_{i}\right)+h r\left(x_{1}, y\left(x_{1}\right)\right)+0\left(h^{3}\right)$ and the errar notation $e_{i}-y_{1}, y\left(x_{1}\right)$. eatablish that $\left|e_{n}\right|<\left(e^{\left(x_{n}-x_{0}\right)^{n}}-1\right) O\left(h^{2}\right)=O\left(h^{2}\right)$ ascuming that T and $T y$ are bounded and continuous with $\left|T_{y}\right|<c_{m}$. The student participates in a somewhat lengthy analysis through some conatructed responses and a great number of multiple choice itema.
3. Practicmi Eatimation of the Errox $y_{n}-y\left(x_{n}\right)$. Without proot, describe for the atudent the more general result $e_{n}(h) m y_{n}-y\left(x_{n}\right) m \operatorname{ch}^{2}+$ $O\left(h^{3}\right)$ where c is a constant. Using a step-size $\left.h / 2, e_{n}(h / 2)=h^{\prime 2} / 4+0 h^{\prime}\right)$. The student is asked to construct an extrapoiation formula which wils inprove the approximation to $y\left(x_{n}\right)$.

Exercise 3A: Let $y^{\prime} m x+y$ and $y(0) m$, What is the computational formala for Taylor's algorithm of order ? We wish to estimate $y(x)$. The student chooses a value of .054 fl a c that n in an integer. Thy computer responds with the values of n and $\left(x_{1}, y_{1}, y\left(x_{1}\right) \operatorname{mae}^{x_{i}}-x_{1}-y\right)$ an $1=0, \ldots, n$. What is h / Ri the computer responds with the new welues of n and $\left(x_{1}, y_{i}, y\left(x_{1}\right)\right)$ for im0,1,...,n. What is the extrapolated wniwer The mtudent in anked to obseave the agremment between $y_{n}(h / 2)$ and the extropolated value to obtain a lower bound on the number of correct digitm.

APPENDTX C
 QUESTIONNAIRE AND EXAMINATIONS

Post-Fxneriment Quertionnaire for CAT Group

CIRCLE THF ANSWEK THAT BEST DEGCRTBES YOUR OPTNTON OR RFACTION

1. I purposely typed an equivalent form of what I knew to be the correct algebraic expression juet to see what would hamen.

$:$	$:$	$:$	$:$	$:$
almost	seldom	about hale	usualiy	almost
never		the time		nlways

2. The examplea and exercises in the Tutorial Mode clarified the concepts and helped me gain additional insight into the theory.

$:$	$:$	$:$	$:$	about half
almost	seldom	usually	aimust	
never		the time		always

3. The Problem Mode should be eliminated in favor of programing the problems in the conventional Fortran manner.

almost seldom about hal		
nevex	abually almost the time	

4. The Investigation Mode should be aliminated because I could have accomplished the same thing more quickly and more flexibly by conventional Fortran programing.

$:$	$:$	$:$	$:$	$:$
almost	seldom	about half	usually	almost
never		the time		always

5. In view of the fact that I had a textbook, the mont useful modeín) of instruction is (are)

:	Tutorial	:	Tutorial and Problem (botil equel)
-	Problem	:	Futerial and Investigation (equal)
:	Investigtition	:	Problem and Inveatiantion (eroct
:	Uncertain	:	mutorial, Froblem and Inventigation

6. If only two modes of instruction were possible, the one I would choose to drop is the

Lasson Problem Investigation Uncextain

7. If only one mode of instruction were possible, the one I would choose to retain is the

$:$	$:$	$:$	$:$
Leason	Problem	Investigation Uncertain	

8. I wal more involved with pushing keys than concentrating on the material.

$:$	$:$	$:$	$:$	$:$
ulmost never	seldom	about half the time	umually	almoat always

9. I felt tense or ill at ease at the teietype.

almest never	seldom	about half the time	unuailiy	almost alwaye

10. When typing wathematical expressions, I found myself concentrating on avoiding Fortran errors and forgot the question or material leading to the queation.

$:$	$:$	$:$	$:$	$:$
almost	seldom	about hale	usually	almost
never		the tinio		always

11. Wen the computer was typing information, I became impatient.

almost never	seldom	about halt the time	unumily	almosi ov, anco

12. The Fortran notation for mathematical expressions made the material harder to read.

91mot	$9 \mathrm{ma} \mathrm{Tcm}^{\text {cm }}$	about male	usumily	alnost
never		the time		d 1 y

13. Automatic computation of axitmatic remuits by the computer holped we to concentrate more on the analysis cf the theory, formulation of the problems, and the interpretation of the results.

| almost seldom about hale unvalily almont | |
| :--- | :--- | :--- |
| never | the time |

14. Whon I answerad wrong, it was an attempt to "fool" the computer or just to see what would happen.

$:$	$:$	$:$	$:$
menost	seldom	about hale	
never		the time	

15. I feel that more can be gained from the conventional clasmroom than from the Tutorial Mode.

$:$	$:$	$:$	$:$
almost	seldom	about half	usually aimost
never		the time	

16. Teletype noise distructed my attention.
almost seldom about hale usinily almost
never the time
17. I lemened more from reading the textbook than I did from the Tutorial Mode

$:$	$:$	$:$	$:$
mimost	seldom	about half	usually
neter			almost
the time			

18. Compared with the previous course material. I found the waterial on numerical aifferentiation, numerical integration, and numerical solution of differential equations to be considerably more difficult.

$:$	$:$	$:$	$:$	
almost	seldom	about haif	usually	ajmost
never		the time		always

19. Compared with the previous course material, I had considerably more difficulty reading the linear teletype notation in lessons on differentiation, integration, and differentia: equations.

$:$	$:$	$:$	$:$
anost	neldom	about heix	usually
never		the time	

20. The fact that some developments in the sections on numerical dita ferentiation, numerical integration, and differential eqiations deviated considerably from developments in the textbook mace the material harder to understand and learn.

$:$	$:$	$:$	$:$
almost	seldom	about half	usumlly aimost
never		the time	

21. I felt that I lecken the proper prerequasite knoriledge for sudying the course material.

22. The method by which I was told whether or not I had given a correct answer became monotonous.

$:$	$:$	$:$	$:$	$:$
strongly	diaagree	uncertain	agree	strongly disagree
				agree

23. Wmaver I typod Hiff in the Tutorial Mode, I waf given information which actually helped me to underatand the concept and construct the rigit ancwer.

$\begin{aligned} & \text { amost } \\ & \text { never } \end{aligned}$	selatom	about halif the time	usuaily	almost atways

24. Wenever I was givei, the correct answer, I was also given an adequete explariation of why it was correct and I could determine what was wroag with ny anwer.

almont never	seldiom	nibout hair the cime	uswally

25. Whenever I typed HBhP or anwered incorrectiy, it was because I was not inapired to think or I really didn't care.

$:$	$:$	$:$	$:$
almont nerex	seldon	about hmle	usually
the tine			

26. Whenever I typed HiswP, I really knew the right anmwer and was only trying to gain additional information.

$:$	$:$	$:$	$:$
almost			
never	seldcm about half	anally	

27. The leason material was on the average

| $:$ | $:$ | $:$ | $:$ |
| :---: | :---: | :---: | :---: | :---: |
| too easy easy | challenging difficult too dieplcult | | |

28. The Tutorial Mode clarified the outside reading assigoment and helped me to gain a deeper understanding of the course meterial.

$:$	$:$	$:$	$:$
armost	seldom	about half	uaualiy
never		the time	

29. When solvias problems in the Problem Mode, I usually needed
less help more help the help it now pro taes
(i.e., tola oniy when wrong)
30. The investigation Mode provided an outlet for aolving my ann probleas and anavering my own questions.

$:$	$:$	$:$	$:$
molmost	seldom	about hale	unvally
never		the tine	
always			

31. In the Tutorial iode, I whargtoch the relevance watween the quention and the lesaon material.

$:$	$:$	$:$	$:$	$:$
almont	soldom	about half	usually	alcont
never		the time		

32. The lesson material was too repetitious.

$:$	$:$	$:$	$:$
alment			
never	seldom about half	usually	almont
the time			

33. The computer lesson seemed organized.

almost never	seidam	about hals the time	usually

34. I knsw when I needed to type Hextp.

$:$	$:$	$:$	$:$
ajmont	seldon	about hale	usually
never			

35. The notes produced by the computer leason vere acceptable for home etudy or revier.

36. I did not mideratand the material but was forced to go on without alequite explaration.

$:$	$:$	$:$	$:$	
anoust	seldom	about halt	usually	alwoat
nevex		the time		always

37. I found myself trying to get through the material ratiner than learning it.

A1ment nover	meldom	abrout hale the time	usumlly

38. I guassed at anwers to queritions when I didn't know the correct ancwer rather than type HIMP.

almost never	seldom	about hait the time	usually

39. The computer lesson was boring and tircsome.

almost never	seldam	about half the time	usually	almost alwaye

40. A picture, graph, or diagram would have clarifiad the concepts and helped me to learn more rapidly.

$:$	$:$	$:$	$:$
elmost	seldom	apout naif	usurily
never		alwost	
the time			

41. At the atart, ny enthuaiam for atudying numarical analyais by computer was

$:$	$:$	$:$	$:$	$:$
rexy low low	normal	high	very high	

42. At the present, enthusiam for studying numerical analyais by computer is

$:$	$:$	$:$	$:$	
very low	low	normal	high	rery high

43. I feel that my overall knowledge of computer-premented courac material 1s
poor
fair
good
excellent
44. Ccomared to my actual knowledge and underatanding of the course material, I feel that ay average performance on exeminationa has been

$:$	$:$	$:$	$:$	$:$
very iow low	about ilight	high very high		

45. The average anount of time I apent in preparation prior to the Tutorial Mode was

$:$	$:$	$:$	$:$	$:$
1eas than	$25 m 30$	30.45	$45-60$	croater than
15 minutes	minutes	minutea	minutes	60 minuties

Table 20. Individual Renponaen to Questionimaire Iteme

$\begin{gathered} \text { Item } \\ \text { Io. } \end{gathered}$	$\begin{gathered} \text { Student } \\ 34 \end{gathered}$	Student	Student 36	Stradent. 3
1	meldom	meld	half the tirne	celds:
2	usumily	usumily	aucily	-
3	aimosi never	haif tine tisue	seluta	alemet rever
4	seldom	-	Iáo	almoro nowat
5	tutorcing	tut. and prob.	prob. ant	tut. ant prob.
6	Investigation	inventigation	uncertiat	inveactesatism
7	tutorial.	tutorial	inventigaty	tutoumet
8	seldow	eldom	ecila	aimost now
9	almont never	almost nev	selac	minomt mevax
10	haif tine time	eldas	seld	4200
11	almost never	seldom	meldam	- ${ }^{5}$
12	almost nowver	seldom	usumil?	haxim
13	half the time	hall the tid	If the tane	nlucer finey
14	dom	am	coldom	3nott ${ }^{\text {atex }}$
15	eldiom	eldam	half the time	half tha "m
16	half the time	almont never	seldom	1 do
17	almost never	seldom	ldow	19\%
18	usuevy	hald the tin		24
19	seldom	seldom	usvady	(
20	half the time	balf the time	almont alwey	meldon
21	seldom	halif the time	suldan	dmost sayme
22	dinagree	agree	disagree	samgres:
23	univily	half the time	usually	namatisy
24	ususily	unualiy	umunily	Lsuctis
25	selecm	dom	dom	alment acser
26	half the tim	Eaviom	selytum	H14(0x)
27	hallenging	chalimpr	challengt	najberging
28	usuag	half the totue	seldam	$4{ }^{4}+19$
29	help it now providetis	help it now proviluea	help ity provites	ap :t mom provinal
30	haif the time	meldom	eldom	010
31	usuanly	half the cime	usumily	asumily
32	alront never	, icm	seliom	1 Cm
33	ajmost slways	usuelly	almost riwnys	unuaty
34	uavally	caually	almost rimbys	hate therma
35	half the time	half the tin	usumily	alugat imatys
36	aeldom	seldom	seld	Rinuat maste
37	seldom	seldom	seldom	half the time
38	seldom	seldom	seldom	hale the time
39	seldam	seldom	seldom	seldat
40	half the time	halif the time	half the time	coldom
41	vexy high	high	very high	hich
42	very high	normal	very high	high
43	good	fair	fair	good
4	about right	low	10	high
45	30-45 mins.	15-30 min.	15-30 min.	15-30 min.

Branination 1

WORK ATK PROBLIMS. EACH PROBLEM IS WORIK 20 POTHTSS
Problea 1: Dascribe the following eoncmpts in mathomatical terwh. Define ali aymbols thet you intronuce.
(a) any three conditions under which you might expect the iteration $*_{k+2}=g\left(x_{k}\right)$ to diverre
(b) quadratic convergence
(c) Aitiken' is 8^{2}-foxmulx
 itamation $x_{k+1} g\left(x_{k}\right)$ wili converge or divorge for ail x_{0} in some interval sbout p if
(a) $g(x) \operatorname{mx}-\frac{f(x)}{2}$
(b) $s(x)=1+x f(x)$

Problean 3: Use may iterative method with x_{0} m. 0 to find $\sqrt{5}$ correac to three signiticant rigures.

Problem 4: (a) The numarical data given balow was produced by a con.-
 linear ateration theorea. The errare at each atens in
 sults, detexmine if the convergonce is linear, quad ratic, or neither. To be correct, you muat justify your answer. Estimate $g^{\prime}(p)$.

k	e_{k}	e_{k} / ω_{k-1}	e_{k} / e_{k-1}^{2}
11	$.12150000 \mathrm{E}+00$	$.40500000 \mathrm{E}+00$	$.13500000 \mathrm{E}+01$
12	$.20246568 \mathrm{E}-01$	$.17486888 \mathrm{E}+00$	$.14392500 \mathrm{E}+01$
13	$.67232947 \mathrm{E}-03$	$.31644144 \mathrm{~F}-01$	$.14893767 \mathrm{E}+01$
14	$.67788842 \mathrm{E}-06$	$.10008268 \mathrm{E}-02$	$.14996638 \mathrm{E}+01$

(b) Anawex question $4(a)$ ror the following duta.

k	0_{1}	e_{k} / e_{k-1}	e_{1} / e_{k-1}^{e}	
2	-. $14695719 \mathrm{E}-02$.29289691E+00	$-.58376306 \mathrm{E}+02$	
3	-. $43042800 \mathrm{E-03}$. 29289347 EH 0	-. $19930553 \mathrm{~m}+6{ }^{\text {\% }}$	-.68047039.4.
4	-. 12606945 Em 03	.29289324E400	-.68046976E+03	-. $23.2326699 \mathrm{~m}+14$
5	-.36924888E-04	. $2128893228+00$	$-.232356898+04$	

Problem 5: (a) Write Newton's iteration equations to find a sixalram eous solution of $f(x, y)=0, g(x, y)=0$.
(b) Using Newton"s metion with $\left(x_{0}, 3_{0}\right) m(1,2, .9)$, Wad kn improved eatimate $\left(x_{1}, y_{1}\right)$ to the simultanoous aciluich of $f(x, y)=x^{2}-2 x y+y^{2}, g(x, y)=2 x+2 y-4$.

Examination 3

WORE ALI PROBTINS. EACH PRORLWK TS HORTH 25 POINTS.
Problem 1: (a) Describe three teata for an 107-conditioned wist pats ay
(b) Suppose the results of eximination on a system dx: yields the reduced augnented matrix
$\left[\begin{array}{cccc:c}2 & 1 & 1 & 4 & 1 \\ 0 & 5 & 3 & 2 & 8 \\ 0 & 0 & 10^{-4} & 0 & 4 \\ 0 & 0 & 0 & 30^{-5} & 13\end{array}\right]$
whore k interchanges or rows took pisce duriag winination. What is $|A|$? Cail we conclude that A is 1 ll . conditionen? (Jugtity your answer.)

Problea 2: (a) Suppose we winh to arive Ax=b by the method of simultaneour dimplacement; (method of Jmcobi) whure

$$
A=\left[\begin{array}{llllllll}
a_{11} & 0 & \cdot & \cdot & \cdot & \cdot & 0 & a_{1 n} \\
0 & a_{22} & 0 & \cdot & \cdot & \cdot & 0 & a_{2 n} \\
0 & 0 & a_{33} & 0 & \cdot & \cdot & 0 & a_{3 n} \\
\cdot & & & \cdot & & & \cdot \\
\cdot & & & & \cdot & & \cdot & \cdot \\
\cdot & & & & & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot & \cdot & 0 & a_{n n}
\end{array}\right]
$$

that is $a_{i f}{ }^{f 0,}{ }_{i n} \neq 0$ for $1=1, \ldots, n$ and wil other $a_{1, f}{ }^{14}$. Show that the iteration wili converge in a finite number of steps, i.e., $\left.x^{(k)}\right)_{\operatorname{mx}}$ for a finite value of k. What is the maximus possible value foy k?
(b) For which of the following coerficient matrices $A($ in $A x m b)$ can we be guaranteed that the method of simultaneous displacements will converge? (Justify your answer.)

$$
A=\left[\begin{array}{cccc}
6 & 3 & 0 & 3 \\
2 & 12 & 4 & 6 \\
2 & 6 & 18 & 10 \\
2 & 3 & 14 & 19
\end{array}\right] \quad A=\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{4} \\
1 / 8 & 1 & \frac{1}{2} \\
\frac{1}{11} & \frac{1}{2} & 1
\end{array}\right]
$$

Problem 3: $p(x) \operatorname{mx} x^{3}+x^{2}+\frac{1}{2} x+5$ has a compleax root in the rectangle in the complax plane ceflned by che vertices $0+01,2+01,2+21,0+21$.

Imaginary
$0+21$

(a) Noma nothex recturigle In the compler plane wh in som tains another complex 700 ot 1 (x).
(b) Suppose we use an initial mproximation to the rowa

 $x^{2}-\alpha_{0} x-\beta_{0}$, we wish to use ste NewtonmBairstow netkon to ind In_{n} improved guadratic iactor $x^{2}-\alpha_{1} x-\beta_{y}$ whert we know α_{1} and β_{2} are cciutions of se syotem

$$
\left[\begin{array}{l}
-b_{2}\left(\alpha_{0}, \beta_{0}\right) \\
-b_{0}\left(\alpha_{0}, \beta_{0}\right)
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial b_{2}}{\partial \alpha}\left(\alpha_{0}, \beta_{0}\right) \frac{\partial b_{2}}{\partial \beta}\left(\alpha_{0}, \beta_{0}\right) \\
\frac{\partial b_{0}}{\partial \alpha}\left(\alpha_{0}, \beta_{0}\right) \frac{\partial b_{0}}{\partial \beta}\left(\alpha_{0}, \beta_{0}\right)
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}-\alpha_{0} \\
e_{2}-\beta_{0}
\end{array}\right]
$$

Compute the values of $b_{1}, b_{0}, \frac{\partial b_{1}}{\partial \alpha}, \frac{\partial b_{0}}{\partial \alpha}, \frac{\partial b_{1}}{\partial \beta}, \frac{\partial b_{0}}{\partial \beta}, \alpha_{1}$,
and β_{1}. Show all work.
Problem 4: Show all work.

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Jat Gaumetan mimination to find A^{-1}.
(b) Compute the normalized determinant of A.
(c) If Armb where $b=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, use A^{-1} to solve for x.

Encuination 3

WORI ANL PROBLENS. EACH PROBLEM IS WORYH 20 POMNTS.
Problen 1: (a) In termo of limita, detine what it meme for D(b) to be an $O\left(\mathrm{~h}^{\mathrm{k}}\right)$-approrimation to a number A .
(b) Consider the following Ta, ior expensions. (Aasume all derivatives sontinuous.)

$$
\begin{aligned}
& f_{-2}=x_{0}-h f_{0}^{\prime}+\frac{h^{2}}{2} f_{0}^{\prime \prime}-\frac{h^{3}}{6} f_{0}^{m \prime \prime}+\ldots \\
& f_{0}=f_{0} \\
& f_{1}=f_{0}+h t_{0}^{\prime \prime}+\frac{h^{2}}{2} \pm_{0}^{n}+\frac{h^{2}}{6} f_{0}^{\prime \prime \prime}+\ldots
\end{aligned}
$$

What are A and $k i f$

$$
\begin{aligned}
& D(h)=\frac{f_{1}-f_{0}}{h} \\
& D(h)=\frac{f_{1}-f_{1}-1}{2 h} \\
& D(h)=\frac{f_{1}-2 f+f_{1}-1}{h^{2}}
\end{aligned}
$$

Problem 2: Suppose we wish to approximate $\int_{1}^{2} \frac{d x}{x}$ by Simpsen's pule.
(a) Write Simpson's approximation for enw 4 subdivisions (i.e., What is the formula using $f(x) \frac{1}{x}$?). Specify the value of $h_{\text {s }}$
(b) The exror in simpaon'm rule in giver by $E_{s}(h)=-h^{4}(b-a) f^{T t}(\eta) / 180$ where $s<\eta<b$. Determine bounde on n and n to insure $\left|E_{s}(h)\right|<5 \cdot 10^{-7}$.
Problem 3: Using the differentiation $D(h)=\left(f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right) / 2 h$ and extrapolation to the limit, approxifate $f^{\prime}(1)$ from the values in the following table.

1	-3	-2	-1	0	1	2	3
x_{1}	.500	.750	.875	1.000	1.125	1.250	1.500
r_{1}	2.0000	1.3333	1.1428	1.000	.8888	.8000	.6666

Problem 4: Let $y^{*}=f(x, y)=-2 x y$ with initial conditionas $y(0) m$. Use Taylor's almorithm of order 2 and atep-aize he. 1 to approwimate $y(.1)$.
Problem 5: (a) Int $p(x)$ max $x^{3}+x^{2}+c x+a$. If approximate $\int^{b} p(x) x x d y$ Slmpan's xale, we get the exact answor. Why? Juatify your anwer.
(b) The following Romiberg integration table is genwraterk for spryontumition to $\int_{1}^{3} \operatorname{In}(x)$ ax. All cman tionn are rounded to four aignificant digita.
h
21.099
$1 \quad 1.242 \quad 1.290$
$\begin{array}{lllll}.5 & 1.282 & 1.295 & 1.297 & \\ .25 & 1.292 & 1.295 & 1.295 & 1.294\end{array}$
Using the values frow the foole, write the value ot the trapezoidal approximation to the integral for Nimitu subdivisions of $[1,3]$. Also, what in the velue of Simpsen's approximation with aNm 4 subdiufisions of $[1,3]$? The correct enaver is $\int_{i}^{3} \ln (x) d x a n, 2 y+6 j \ldots$.
Why in the lant diagonal entry in the table worse than the third diagonal entry?

Table 21. Rankinge by Exam 1 Scoren

Table 22. Rankings by kram 2 Scores

3tudent Score Rank:	1 88 4	2 83 5	3 67 21	4 80 6	$\begin{array}{r} 5 \\ 90 \\ 3 \end{array}$	$\begin{array}{r} 6 \\ 53 \\ 27 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 80 \\ 7 \end{array}$	$\begin{array}{r} 8 \\ 92 \\ 2 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 62 \\ 24 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 80 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \\ & \hline \end{aligned}$	$\frac{13}{42}$
Student	14	1.5	16	27	18	19	20	21	22	23	24	29	86
Scorre	0	36	75	53	51	71	42	73	72	79	74	77	66
Rent	36	34	13	28	30	18	32	15	16	9	14	11	22
Student	27	28	29	30	31	32	33	34	35	36	37		
Soore	72	41	0	59	70	79	52	64	70	54	93		
Rank	17	33	37	35	12	10	29	23	20	26	1		

Table 23. Rankings by Exam 3 Scores

8tudent Score Renk	$\begin{aligned} & 1 \\ & 62 \\ & 22 \\ & \hline \end{aligned}$	2 86 9	3 54 26	4 100 1	5 95 3	$\begin{array}{r} 6 \\ 37 \\ 32 \\ \hline \end{array}$	7 77 13	$\begin{array}{r}8 \\ 86 \\ 10 \\ \hline\end{array}$	$\begin{array}{r} 9 \\ 43 \\ 29 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 98 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 22 \\ & 35 \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \\ 63 \\ 18 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ 0 \\ 37 \\ \hline \end{array}$
Student	14.	15	16	17	18	19	20	21.	22	25	24	\%	26
Score	69	63	49	73	38	63	65	61	62	59	89	93	85
Rank	16	19	27	15	31	20	17	24	23	25	7	4	11
Student	27	28	29	30	31	32	33	34	35	36	37		
Score	90	83	74	63	18	93	31	42	34	47	87		
Renk	6	13	14	21	36	5	34	30	33	28	8		

Tabla 24. Rankinge by Avarage Scores Over Thrae Exams

Student Scox Bank	$\begin{array}{r} 1 \\ 71 \\ 13 \\ \hline \end{array}$	2 8 5	$\begin{array}{r} 3 \\ 55 \\ 27 \end{array}$	$\begin{array}{r} 4 \\ 88 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 81 \\ 7 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 48 \\ 31 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 81 \\ 8 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 89 \\ 2 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 63 \\ 20 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 89 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 35 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{18}{67} \\ & 25 \end{aligned}$	23 35 35
Student		15	16	17	18	19	20	21	22	8*	24	45	26
Score	49	56	57	65	45	64	56	69	66	65	78	49	71
Sank	30	25	22	17	35	19	26	14	16	18	10	4	12
etudent	27	28	29	30	31	32	33	34	35	36	37		
8core	72	54	48	63	57	79	46	48	57	52	91		
Renk	11	28	33	21	24	9	34	32	23	29	1		

```
LESSON AO KERBOARD gRIENTATION
```



```
    THE RICAT-MOST KEY IN THE SECOND ROW FHOM THE TOP IS
    LABELILED (HETHLN). DISH THE (RETULN) KEY.
BY PUSHINA THE (GETHMS) KYY, YOU SIMNA. THE COMBUTEL THAT YOU HAVE
COM&LETED %OUHT LESGONSE*
```



```
* A
    OK. NOTICE THA', THE: COMFUTER REMAINS INAGTLUE UNTIL. YOU
    PRESS (RETUHN). HON &REGEIN(G (RETUHN), THF COMPUTEW CHECKS YOUR
    RESPONSE NND TAKES AMDRODSIATE AGTIDN.
    TYPE ANY STGING OF L,ETTRGG, ONE UF WHICH lS THF LETTEM B
#AOEKBLLE
    OK. THE COMPUTBR EXFECTS A RESPONSE FROM THE STUDENT IF IT
    TYPES * AND STODS. NOTICF THE ON THE NFKT STOP.
    THEN POCE: (BETOLM).
*
    OK. SUMMARIZING,
        1. THE COMbITEH EKPFOTS A BESPONSF FHOM THE STUDENT IF IT
        TYPES " AND ETOLS,
        2. THE STUDENT SIGNAL.S COMPLETION OF A HESPONSE BY
        PUSHING (RETUNN).
    PUSH (RETHINS TO CONTINUE.
    2. CORRECTION OF TYPING ERRORS - THF BRUBOUT: KEY.
    THE (RUBOUT) KEY ACTS AS A logical mHABER IN THE SENSE THAT THE
    STUDENT MAY ERASE A PARTIALL,Y COMPLETED ANSWER AND START ALL OVER,
    THE (RUBOUT) KEI IS ON THE 3KD ROW FHOM THE TOP -- RIGHT-HAND
    SIDE. PUSH (RUBOUT); THEN PUSH (RETURN).
*
    OK. TO SEE HOW (RUBOUT WORKS. PERFORM THE FOLLOWING STEPS.
        (1) TYPE THE WOKD &.UZ
        (2) PUSH (RUBOUT)
        (3) TYPE THE WORD PLUS
        (4) PUSH (RETURN)
*PLUZ
PLUS
    OK. THE COMPUTEH I GNORES EVFRYTHING TYPED HRIOR TO PUSHING
    (RUBOUT). YOUR RESPONSE IS RECOGVIZED AS THE WORD "PLUS".
    JUST AS IF YOU HAD NOT MADE A TYPING ERROR.
    PRESS (RETURN) TO CONTINUE.
```

YOU MAY USE THE: (KUBOUT) KEY AS OFTEN AS YOU WI SH IN ANY
RESPONSE. SULYOSE A STUMFNT VFRFOIMS THE FOLLOWING

(2) blesires (xtumolet)

(4) FUSHES (KUFOUT)
(5) TYPES THE WORD SQUAEE
(6) मUSHES (KETUHN)

WHAT WOULD THE COMPIJTER GECOGNIZE AS THE RESPONSE? *SQUAKF. OK
3. COHUFCTION OF TGELNG FRHORG - UHE * KFY

 *
SINCE THF IS AN UPWER CASE CHAKACTEF, YOU MUST DEPRESS THE (SHIETD KEY WHEN TYJING *. TYFE SVNENAL TIMKS. PRES: (FETUKN) WHFN SATISFIED.

THE ACTS AS A LOGRCAL BACKSPACE IN THE SENSE THAT IT
DELETES BOTH I TSFL.F GND THE PREVIOUS CHAHACTEH FUOM THE COMPUTEF.
FOR EXAMH,F GUYLOES THE STUDENT PERFORMS THE FOLIOWING STEPS
(1) TYJES NBD
(a) TYPES
(3) TYよE:S C
(4) PUSHES (BETURN)

WHAT WORD WOULD THE COMPUTER FECOGNIZE AS THE RESPONSER

* ABC

OK
THE KEY MAY BF: USED AS OFTEN AS NEEDED IN ANY BESPONSE.
WHAT WOULD THE COMLUTEH RECOINIZE IF THE STUDFNT TYPED XYY\#-ZWW
AND PUSHED BFTTUKN?
K-W
OK
SUPPOSE THE STUIBENT DOES THE FOLLOWING
(1) TYPES YESW\#\#NOY*WO
(a) PUSHES (HETUNN)

WHAT ANSWEIK WOULD THF: COMPUZEU RECOGNIKE?
WESS
NO. THE YESH\# DELETES THE TES. TKY AGAIN.
NO
OKr
WHAT IS THE FINAL ANSWFR IF THE STUDENT
(1) TYPES THE WORD YESH*
(2) TYPES NO
(3) PUSHES (KUBOUT)
(4) TYPES NO
(5) PUSHES (RETURN)

NO
OK
THE (RUEOUT) KEY AND KEY MAY BE USED AT YOUR
DI SCRETION TO CORRECT TYPING EHZORS.
PRESS (RETURN) TO CONTINUE.
1

```
4. M^THFMATLCAM. ENFRESSION%
```



```
    SINC& IT IS AN H|⿸⿻一丿又土
```



```
+++t+t+
    TYPE tHN FRLHESSION K+Y%%
<>"%%+%
    0K.
```



```
    TO. nOW--HIGHT SIDE.
    TYPE THE EXPHESSION X*Y+%
#X:**Y+%
    OK
```



```
    RIGHT EIDE:
    TYPF THE ERMUESSLOS S* %*Z*W
X-X+2*W
```



```
#X*Y/G-V***K+A
    OK. THE & (NP-ARLOW) MAY ALESO HE USED TO DENOTE
    EXPONFNTIATION GND IS LOCATEDDON THE BOTTOM ROW---IN THE MIDIN.E.
    TYPE THE EXPRESSION X*Y/Z-WIK+A
X*Y/Z-WIK+A
    OK.
    5. 5unscurmen valunam,%e
```



```
    FOR EKAMLLES X[3] DENOTES THE THIMD ELEMMOT OE JHE ARHAY X.
    YOU WLLJ, FIND THE BHACKET SYMBOLS [ AND ] ON THE FIRL'T BNTI SECOND
    HOWS FrOM THE BOTTOM. LOCATE THESE SYMBOLS AND
    TYPE THE NAME FOH THE 15TH ELEMENT OF AN ARRAY CALLEDD W
*N[15]
    OK.
    REMEMDEH THAT BHACKETS (NOT YARENTHESIS) ARE USED TO DENOTE
    SUBSCRIPTS. WLAT IS THE 1+1,J-1 ELEMENT OF THE ARKAY AT
ACI+1,J-1]
    OK.
    6. THE DISTINGUISHED NAME "pI"
    THE NAME "dI" DENOTES THF CONSTANT 3.14159...EETC.
    WHENEVER YOU WISH TO USF THRS CONSTANT, YOU MERELY TYPE THE
    WORD PL. FOK ERAMMLE, COS(PI)=-1.
    PHESS (RETULN) TO CONTINUE.
* what are 3 distinct values of x (IN fadians) so that Sin(X)=0?
    ONE: VALUE IS X=
PI
```

ok
anothem value 10 is $\mathrm{z}=$ 0
OK
A Thiki varitr, is $x=$
1.194 pl
illhegal chaiacter or combination 4p
type a condect expression.
*194*3/311"
ок.
7. availabie mathematical functions - latitude in usage
the follinwing subset of fohthan functions may be used by the student at ank thye.

```
    (A) THIGONMGETHIC - SIN,COE.TAN, SEC,CSCPCOTAN
    - A&CSIN (ASIN). ARCCOS (ACOS). ARCTAN (ATAN)
    (B) HYPYKLOLIT: - SLNH,CGSH, TANH
    (C) SQuaks, NWOT - SGuT
    (D) EXPONLNTRAL. - ENS
    (E) Natinma.mg - LN OH Alog
    (F) RASE 1O L.OG - LOG TR ALOG1O
    (G) ABSOL|ETF, VALUH; ABS
    (H) LNTEGFM VALGE, - INT
```


EQUIWALENT ANSWERS AND ARE HECOGNTZED AS SUCH. LIKEWISE,

B* $\cos (x) * * 2-1+\operatorname{SIN}(x) * * 2$ AKE HECOCNIZED AS EQUIVALENT. WHENEUER
THE ©THTHMETIC OR ALGEBHA BECOMES BURDENSOME, LEAVE YOUR ANSWER IN
AN EQUI VALENT FORM.
PRESS (RETUAN) TO CONTINUE
*
8. FIUST FETMATES OF zEBOS (HDOTS) OF FUNCTIONS
THE REMAINDEH OF THIS LESSGQ: IS DEVOTED TO LEARNING SEUEHAL
SIMPLEE TECHNIQUES TO ESTIMATE THE LOCALITY OF ZEFOS (ALSO CALLED
ROOTS) OF A GI JEN PUNCTION F(X).
PRESS (RETUNS TO BEATN.
A. METHOD - CHANGE OF SXGN OF $F(X)$

INTERVAL (A, BJ. THEN F(K) HAE A ZERO IN THE INTE:TYAL LGOBJ.

WAY TO DESCRIBE THE CHANGE OF SIGN IS TO SNY F(A)*F(B)<O.
PRESS (RETGLN) FOR EXAMPLES.
-
EXAMPLEAA, LET F'(X)mX-EXP(-X). ON WHICH OF THE FOLLOWING
INTERUALS DOES F(X) CHANGE SICN?
(A) [A, B] $m[-R,-1]$
(B) $[A, B]=[=1=0]$
(C) [A, B]m[0.1]
(D) $[A, B]=[1, R]$
(E) [An $B]=[C, 8]$
CORRECT ANSWERIS (A,B,C,D,E)?
d

NO．F（A）＊G（B）SO WHICH GIVES NO INDICATION OF A ZERO IN THE INTEFVAK．RASBI．THY ARALN OH TYPE HELP． CORHECT ANGWER LS（ABHEGODOE）？
OHELP

E

F（O）＊F（2）＜（ANI F（X）CHANAFS SIGN ON CO．EJ．A EETTER CHOICE， HOWEUEK：WORILD HAUE HFFF THF INTERVAL（O，I）SINCE IT AFFORDS A BETTER ESTMMATE OF THF HOOT UF F (X) 。 PRESS（HETULN）TO CONTINUE．
＊
EXAMPLE AR，LET $F(X) m X+2-E X P(-X)$ ．FIND AN［NTERVAL（A）B］SO THAT F（A）＊F（A）＜0．WHEN READY，PUSH（RETURN）．
＊
A＝
－1
B＝
－1
CHOOSE B＞A．START ALK OVER．
A＝
10
日
＊ 10
NO．$F(A) * F(B)>0$ ．TRY AGAIN．
$A=$
0
Bu
0112
NO．$F(A) * F(E)>0$ ．TRY AGAIN．
Aw
0
Bm
$1 / 4$

DO YOS WANT TO TRY A SMALLER INTERUAL FOR THIS EXAMPLET
YES
A＝
－1
$\mathrm{B}=$
10
OK
DO YOU WANT TO THY A SMALLER INTERVAL FOR THIS EXAMPLET
YES

A＝
－1
Bm
－1／2
NO．$F(A) * F(B)=0$ ．THY AGAIN。
Am
－1／8
B＝
10－4
OK
DO YOU WANT TO TRY A SMALLER INTERUAL FOR THIS EXAMPLEE
WNO

```
EXAMFLE AB. LETT F(X)ロ2*X-TAN(X). BY GRAPHING F(X), FIND AN
INTEIVAL, [A, B] WHICH CONTAINS THE "SMALLEST PDSITIUE ROOT" OF F(X).
WHEN READY, PRESG (RETUEN).
|
An
PI
            YOU HAVE CHOSEN AOPL/2. NOTE THAT F(x) HAS A ROOT LESS THAN
            Pl/R. TRY AGAIN.
    Am
|
SINCE WE SEEK A POSITLUE ROOT, YOU WOULD NATURALLY CHOOSE ADO.
A=
M1/4
    B=
**PI/3
                    F(X) IS DISCONTINUOUS AT PI/Z. FIND AN INTERUAL MHERE F(K)
                    ls ConTivimus.
    B=
*PI/3 (N). F(A)*F(B)>0. TRY AGAIN.
    A*
/Pl/4
    Bm
MP1/2-00000%2
    OK
```



```
NO
    PEMAR&-m-EGTIMATING THE HOOT OF F(K) EY FLNDIMG WE INTERUNL [ASB]
```



```
    IS IMPOSSIHLE SO APMLY THE TRETV THE SAME IS THUE FOR
```



```
*
B. METHOL - INTERSFCTLON OF FUNGTIDNS
```


 F(X) IS EQUIVALENT TO ESTIMATING A POINT OF INTERSECTION OF THE FUNCTIONS $G(X)$ AND H(X). PRESS (RETURN) FOR A ROUGH GRAPH.

*

C. METHOW 3 - THGHNLUUFS FOK HEAI, HOOTS OF MOLYNOMIALS

CONSIDER THF GENFHAL, FOHM O: A POL, YNOMFAL. AS

If SOME ROOT $P: S$ LaBGE IN ABSOLUTE UALUE WI TH COMPALISON TO THE
OTHERS. THEN THE FLBET TWO TEKMS ALN3*X**(N)+ALN-17*X*2(N-1)
ARE DOMINANT AND THE SOLUTION TO ALN3*K**(N) PA[Nm1]*X**(N-1)
"MAY" YIELD A "GOOD" ESTIMATE. EQUIVALENTLY (FACTORING OUT
$X * *(N-1))$, WE SEEK A HOOT OF $Q(X)=A[N] * K+A[N-1]$ AS THE ESTIMATE
OF THE NOOT OF P(X). PRESS (RETURN) FOR EXAMPLES.

```
    FXAMLHF C1. LET Pe%):=K**3-11.1*X**2+11.1*X-1. A FIFRT ESTIMATE
    OF THE; LALGEST ROOT (IN MA(NITUDF) OF &(X) IS GIVEN BY THE ZERO UF
    a(x)
K-11.1
    OK
    THIS GIUES 11.1 as an metmmiote to the Lakgest hoot in
```



```
    PRES:j (heTMM, (1) bosTRUMF.
```



```
    THE TECHNIMYE GBOUE, GAN YSTIMATE OF THE LARGEST IDOT IN ABSOL,UTE
    VALUE IS WHITT NHMBEIT?
    ESTIMATE:%
|
            TMY AGAIN ON TYPE HPT,O
    ESTIMATE:=
HELLH
            TAKF THE FHKST TWO TEKMS OF P(X) AND FACTOL OUT THE X**3.
                    SET THE: HESIM.T TO O AND SOLVE FOR X.
ESTIMATE=
-10
    OK
    SO-10 L: NN BSTIMATF OF THE LALMEGT HOOT (IN ABSOLUTE yALOH.) OF
    P(X). THF RAKGEST WOAT IS ACTMNLYY-11. PHESS CHETVLNO
```



```
    LAST TWO TERMG, NAMFLY A[, I]*X+A[O], AHF USHT% EH.YING
    A[1]*A+ALOJ*O "MAY" bHGOVIDE A "GOOD" EETLMATF. NHESE (RETURN%"
*
    EXAMPLEE (%%. CONSIDER AGAIN P(%)=X**3-11.1*K**2+11.1**-1. FIND AN
    ESTIMATF TO THE SMALLEST ROOT (IN ABSOLUTE VALUE) BY THE ABOVF;
    TECHNI GUE:
    ESTIMATE=
1/11.1
    OK
```



```
*
    THIS IS THE: MND OF L,RGSON A.
    YOU HAVF TWO GHOLEFS
    (1) TYPE "SLOGOFF" %HICH WILL SIGN YOU OFF TME COMGQEL,
    (2) TYPE "SLESSON,--..." WHEHE--.-. IS THE SECTION NAME
        OF THE MATEKLAL. YOU WISH TO STUDYY.
    CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST OF
    AUAILABLE SECTION NAMES.
```

*SLOgOFF

LESSON 10. THE NFWTON-WALBTOW METHOD FOL FINDING GOMHLEX ZEROS (jF A bOLYNOMINL. PRESS (RETURN) TO HEGLN.

,

1. REUIFW JF THE DIULSLOA ALGOEITHM FOL DIULDING

 PRESS (EFTHMN) (I) CONTINUE.

EXAMPLF 1A• L.

WHITE: THP GMIOKIMATE QUADBATIG FACTON IN TEHMS OF X AND XEAL NUMBFITS.
$(X-Z)+(K-Z 1261)$

* ***2-1.81*

THY ACRMN UM TYLF HHL.D.
$(X-Z) *(X-\%$ Ma*)
HELD
$(X-Z) *(K-Z \Pi / A K)=X * * 2-(Z+Z L A R) * X-Z * Z E A R E \quad Z+Z B A K$ AND Z*ZBAR

$(X-2) *(X-E!4 \pi)=$

TKY AGAXN OL TYLE HELAG
$(X-Z) *(X-7,11 A 13)=x$

* $x * * 2-2 * x-1.151$

PRESS (LETUKWS TO GONTINDH:
WE WILL. CONSIDEH THIS APPHOXZMATE LDAOHATLG FACTOK X**R~8*K*1•81
AS AN INITIAL. ESTIMATE TO THE TRUE FACTOR AND WENOTE IT EY
X**2-S[O]*K-T[O]. WHAT ABE THE VALUES OF S[O] AND T[OJT
S[0]m
18
OK
TCO]a
-1-81
OK

WHITF THF RFCURSION FORMUAS. NUMEHICAL EXPRESSIONS, OR VALUES FOR
THE: B[I] TO DEF[NE $G(X)=B[4] * X * * 2+B[3] * X+$ F[2] AND
$R(X)=B[0]+(X-5[0])+B[0]$.
B[4]=
1
OK. $\quad B[4]=A[4]=1$.
$B[3]=$
- $-8+5 * 8[4]$

TRY AMAIN OK TYEF, HEL.

$B[3]=$

0

E[T]=

B[1]:

 B[O]:

$Q(X)=$
\#HELL

"R(X) =

*
NOTF THAT RGE) IS MOT RHKO IS THI: FXAMLLE SINCE

 Gunmende: Fardab

I $(X)=1][1] *(X-(5)+1[0] \therefore 0$
AND SOLUING FOK IMLIGVED GALAES OF S AND T BY NEWTON © METHOD.

$B[1]=0[1]+3+14[61+T+1 a, 3]=0\}$

\#

 VALUES FOK THE PALTIAL DEHSIVATIVEG OF BC IJ AND BCOJ EVALUATED AT S[D] AND T[O]. THESF PAKTIALS AKF DENOTED BY [H1'S]. [BI'T]. [BO'S]. AND [BO"T]. PRESS (HETUIN) FOR EXAMPLE:


```
TO DETERMLHE Q(%) AND R(X) FOR AN A&FHOKIMAT& GUKDLATIO FACTOR
X**&-S*X-T, WE COMPUTF, B[4]=A[4], B[ 3]=A[ 3]+5*[B[4],
B[2]=A[2]+S*B[3]+T*B[4], B[1]=A[1]+S*B[8]+T*B[3]. AND
B[O]=A[O]+S*B[1]+T*B[2]. THES GIVES THE VALUES OF G[1] AND BEO]
NEEDED FOR THE HIGHT SIDE OF NSWTON'S EQUATIONS. WE NEXT
calculate [blog] ANi) [bo'Sj By mecungion.
TAKE THE PARTIAL DERIVATIVE OF BC 4] WITH HESPECT TO S.
C[5]=[84*S.j)
|HELP
    B[4]=A[4] WHICH IS CONSTANT. TAKE THE DERIVATIUR WITH
    RESPECT TO S. WE CALL THE FESULT C[5].
    C[5]m(B4*S]=
|
    OK
    NEXT, TAKE THE DERIVATIVE OF B[3]=A[3]+S*B[4] WITM [ESFPECT TO S.
    C[4]=[B3'g]:
#B[A]
    OK
    USENG THE SYMBOL C[4] FOR [B3'SJ AND RECALLING [EA'SIMO, CONPU'SE
    C[3]*[日E*5]*
CC[3]+E[3]
    TRY AGAIN OR TYPE HELP.
    C(3)=[8&"5]:
|&C(3)+B[A.)
```



```
                            [B4.G}m(0) AND ACR] IS CONETANT. SO
```



```
        PHESS (HETURN) TO CONTINUE.
    USING THE SYMBOLS G[3] FOR [BE'SJ ANL C[A] FOR [B3'SJ. COMPUTE:
    C[8]=[81's]=
HMOP
```



```
        [CAJ. MOTE THAT T'SmO AND A[1] &S CONSTART.
    C[2]=[日f'S]=
R*S*543]+5*BE[4]+5*B[3]
    TKY AGAIN OR TYPE MELP.
    C[a]m(B1'E]*
O+C(3)+B[4]
```



```
    C[4]. NOTE T:Sm0 AND Al[] IS CONSTANT. SO
    [日1'S]=0+S*[E&'G]+1*R[&]+T*[B3'S]+[CT'S]*B[ 3] 0&
        C[P]=B[8]+G% 3]+T*C[4]. PRESS (RETURN) TO CONTINUE.
*
    USING TKE SYMBOLS C[2] FOR [BI'S] AND CE3] FOR [BQ'S], COMPUTE
    C[1]-[B0'S]=
*S#C[8]+B[1]+T*C[3]
```

```
OK
    SO, TO FIND THE VALUES OF [BI'S] AND [BO'S] FOR NEWTONAE
    EQUATIONS. WE COMPUTE C[4]mB[4], C[3]mB[3]+S*C[4].
```



```
    TO FIND THE UNLUES [BL'T] AND [BO'T], WE PROCEED IN A SMMILAR
    MANNER. PRESS (RETURN) TO CONTINUE.
*
    TO COMPUTE [EL'T] AND [BO'T] FOR NEWTON'S METHOD, WE START BY
    COMPUTING [B4'T] AND CALLING THE RESULT D[ 6]. COMPUTE
    D[ 6]=[B4'T]=
|
    OK
    TAKE THE DERIVATIVE WITH RESPECT TC T OF B[3]=A[3]+S*B[4].
    D[5]m[83'T]*
O
    OK
    TAKE the derlvative wITH respect to t OF b[2]=A[8j+5*B[3]+T*B[4]
    D[4]=[BE'T]=
B[4]
    OK
    USING THE GYMBOL, DKA] FOR [B2'T], COMPUTE THE PARTIAL WITH
    RESPECT TO T OF Br, 1]=A[1]+S*B[2]+T*B[3]
    D[ 3]m[8( 'T]=
#T*D[4]+B[3]+5*E[4]
    TGY aGATN OR TYPE HELP.
    D[3)=[81'T]m
#HEL,P
            AC13 lS CONSTANT. [S'T]=[B3'T]mO. DENOTE [BR'T] EY DEM].
    D[3]m[B1:T]m
#[{3]+5*D[4]
    OK
    USING THE SYMBOLS DE 3] FOR [BI'T] AND DKA] FOR [BE'T] COMPUTE
    THE DERIVATIVE WITH RESPECT TO T OF B[0]=A[O]+S*B[1]+T*B[R].
    D[2]=[80'T]=
*
S*D[3]+E[2]+T*D[4]
    OK
    SO. TO TIND THE VALUES OF [BA'T] AND [BO"TI FOE NEWTOM'S
```



```
*
    NOTE THAT D[4]mC[4]. D[3]@C[3]. AND D[8]mC[2] 50 that computation
    OF THE D[1] AREE NOT NECRESARY. USING THE VALUES [BI'T3mCC 31
    [BO'T\m&E1'S]=C[R], AND [BO'S]=C[\]. NEWTON'S SYSTMM DECONES
        C(2]*{S-S(0J)+C(3)*(T-T(OJ)=-日[1]
        C[1]+(S-S(0])+C(2)*(T-T(D])=-日(0]
    PRESS (RETURN) TO CONTINUE.
```

-

by multiluinc the finct of these eginations by cces and thz second BY C[I] aND ELIMINATING T, THE IMPMOVED VALIJE S IS

SIMILARLY, THE IMPROVED VALIJE OF T IS

 PREGS (HETIUN) TO CONTINUE.
,
EXERCLSE 3E. $\downarrow(X)=X * * 4-20 * X * * 3+199 * X * * 2+20 * X-200$ HAS A COMFER ROOT NEAK $Z=(9+10 * 1)$. COMPUTE THE APPROXIMATE QUADRATIC PACTOR ($\mathrm{X} * * 2-5[0] * X-T[0])=(X-Z) *(X-2 B A R)$. WRITE THE NUMERIC VALUES POR S[0] AND T[O]
S[O]=
*-18
TITY AGAIN OR TYPE HERP.
S503:
18
OK
T[0]=
181
TRY AGAIN OR TYPE HELH.
$T[0]=$
-181
OK
RECALL NEWTON:G EQHAKIONS

WHERE WE COMPUTE BCOJ.BE IJ BX THE BECURSION UENEA[NJ.
$B[N=1]=A[A \sim 1]+S[0] * B[N]=B[I]=A[1]+S[0] * B[1+1]+T[0] * B[I+8]$ NOR
IWN-R.....O. CCIJ AND C[2J ARE COMPUTED BY THE RECURSION

FOR IWN-8,....i. PRESS (RETURN) WHEN READY TO COMPUTE DCOJ.BEA,
C[1] AND C[2].
-
B[4]m
11
OK
BC $3.3=$

- $-20+18 \mathrm{~m} 1$

OK. BC 3]-8. 8 .
B[8JM
199-36
TRY AGAIN OF TYPE HELP.
日[8]m

- 199 -36-181

OK. BC. $2=18$ -
B[1]

UNBALANCED PARFNTHESIS OR BRACKETS TYPE A CORHECT EEPAESSION.
(80-18*18-2*(-181)
OK, $\mathrm{B}[1]=58$.
B[0]=
($-800+18 * 58+(-181) *(-18)$

```
    OK, b[0]:2410:.
    WE NON HAUF TH, Valob, FOR THE, HIGIT HAND SL LE of NEWTOS'S
    E{UATLONS, NAMELY, -B[OJ=-41OE AND -B[1]=-5s. WE MISST YET
    COM&UTF: THE VALIESS OF THE PNHTIALS ,NAMELY, C[3], C[2], AND C[[].
    WRITE THE NHFLOPLIATE EXHREGEIONS OR VALUES FOH THE CEIJ.
    C[4]=
*
        TRY AGAIN OK TYPE HELP.
    C[4]:
|
    OK, C[4]=1
    C[ 3]=
-2+18
    OK. CLS3=1%%
    C[2]=
*-18+16*18-181
    OK, C[2]=89
    C[1]=
*58+18*59-182*16
    OK. C[1]=-1236.
    WE NOW HAVE THE VALUES OF THE PARTIALS AND NEWTON'S EWGGTLUNS ALL
```



```
    C[1]*(S-S[O])+C[2]*(T-T[O])m-B[O] OR - 1236*(S-18)+89*(T+181)m=4102
    WRITE THE EQUATIONS OR VAL'UES FOR S AND T YHICH SATISFY THIS
    SXSTEM.
    S=
*
*(-58-16*(72+18!)):89+18
    THE SOLUTLON OF NEWTON'S EQUATIONS GIVES
    S=S[0]+(C[3]*B[0]-C[2]*B[1])/(C[2]**2-C[1]*C[3])
        =18+(16*4102-89*58)/(89**2-(-1236)*16))=18+60470/27697 OR
    S= . 20183269E+0&
    PRESS (RETURN) TO CONTINUE.
*
    T=
*T[OT+(G[az*B[0]-C[1]*B[1])/(G[1]**2*C[2]**3)*C[C])
    THE SOLUTLON OF NFUTON'S EGUATIONS GI ULS
    T=T[U]+(C[1]*B[1]-[[[2]*G[0])/(C[&]**2-C[1]*C[3])
        =-181+(-1236*58-89*410E)/827697*-181-436766/27697 OR
    T= -. 19676943E+03
    PRESS (RETURN) TO CONTINUE.
*
```

```
    THE IMPPGOVED VALUES S AND T ARE DENOTEL BY SE1I AND TEII AND THE
    IMPROURD (AHMmLATIC FARTOGK IS
```



```
    WE NOW HmL&AT THE, ITHMTION UITH THF NEW QMADMATLC FACTOH
```



```
    STEP 3. SOLVF, FOL : GND T LN NFWTON'S EQUATIDNS
```



```
        C[1]*(5-E[K])+C[aj*(T-TtK])*-BEOS
    STEP 4. SK:T S[K+1]mSs TLK+1J=T.
    EACH TIME (RETIMN) IS WLESSED* STELS L-4 WILL HE PERPMAED.
    TYPE 'STOP' WLRN YOU ARE SATLGFIED WITH THE CONVEROENCE OF THE
    QUADRATIC FACTOR X**&-S[KJ*X-TrKI.
*
    I ary% grij cect
    4 - 100n0000E*01
    -200000005+02
        . 10900000E+03
    .20000000E+02
    -20000000E+03 - 72455131E+03
        -100000000et0l
        -183888955%+106
        .506453a98+01 -23022341E+03
        000
        0.20366538re+02
        -50E65329&+01 - 22022341E+03
K= 2 S[KJm . 19968176E+08 T[KJm -. 19953118E+03
QUADRATIC FACTOSSXX**2- . 19988176E+02*X+ .1095,1118E+03
*
    1 A[IS GELJ OCED
    4.10000000E+01
    --20000004OE+0&
        -10000000E+01
        .10000D00E+01
        --316e37%,4%-01
        -19930:352m004
    . 199000008+05
        #1166841, 1E+01
        -30541433E+01
        .19734478E+0.3
    -20000000E+08
                                -.33256013E404
    0 -. 20000000E+03
        .937669468+U8
K= 3 S[K]m -20000136E+02 T[KJ= -.9000000&&E+03
QUADRATIC FACTOHmX**2-.20000136E+02*X* . 2000008&E%03
*
```



```
    4 - 1000u000et.01
    -1000u000et01 - 10000000z+01 - 1000cg00e+01
        -13614781E-03 -20000272t+44
    -. 800000N0E+0E
    & . 199Cu000E+03
    .20000000E+0R - 1077343REOOL
        -.99809305E+00 .199001986E+03
        -.198477158+08
    -.20000000E+03 -. 18510536E+00
K=4 S[K]= - 20000000E+03 TCKJm -0 20000000m+03
QUADRATIC FACTORNX** 2- . 20000000E+02*K+. 200000C05*03
STOP
```



```
    THE 100T: A:SF
    M1=6 - 200000005408-54ET( - 40000000E+03) /2 AND
```



```
#
    THIS IS THF FNL, OF LFOSON 10.
    DO YOU WLSH TO BFGIN THE WHOBLEM MODE?
MES
    PRONLFM MOIN; FOK: WBESON 10
```



```
    FOR EACH JiOM,FM, ROH MI!jT SWECIF%
```



```
                DBTaHN C[3], C[%], ANB CiLT
```



```
                400T %.
```



```
        C[1)*(G-S[K])+C[&)*(T-T(KJ)m*RTUJ
    WITH S[K&1]m&&T[K+1]=T.
    YOUH RLOMLKM SELECTION IS (1.2.3.EXTPA,NONE??
|l
    PROBLEM 1
```



```
    NEWTON-HAIRSTCW METMOD TO FIND A GUADHATLG FAGTOR QF PGX. THE
    COEFFICIENTS OF P(X) ARE A[4]=1, AK 3Jm0. AKgjm3, A[dJmOn A(0)mi.
    PRESS (HETURN) WHEN KEADY TO SPECIFY SCOJ AND TCO\ TON THE
    INITIAL. APPROXIMATE QUADRATIC FACTOR X**2-SCOJ*X-TCOJ.
*
    S[0]m
|
    T[0]=
#2.56
                            TROJ=-Z*ZBAR EXPIESSED AS A StEAL NUMBEF.
    TCO]:
#-2.58
    DENOTE THE KTH AGPROXIMATION TO THE QUADRATLC FACTOR BY
    X**G-S[KI%X-TCK]. DEFINE THE RECURSION FOPMULAS FOR COMPUTING THE
    B[TS USING S[K] AND TCKJ. PUSH (RETURN) WHEN READY.
*
    B[4]m
|
|[3]m
*
        G[N-1]:A[N-I]+S[K]*B[N] IS THE SECOND RECURSION FOMNLKA.
    B[3]=
#S[K]
```

```
    B[2]=
* 3+:[(K]*[3[3]+[CK]*BC4]
    B[1]*
#S[K]**[2]+T[4]*W[5]
    B[0]*
*1+5[к]*[3[1]+T[K]*&[2[*]
    DEFINE, THE RECURSION FORMULAS FOR COMPUTING THE CCIJ USING SCK\
    AND TCKJ. WHEN READY, PUSH (RETUKN).
*
    C[4]=
|l
    Cf3j=
*
1B[9]+5[K]*(C[4}
    C[ajm
```



```
    C[1]*
G[1]+S[K]*C[6]+T[E]*CE3]
```



```
        C[1]*(S-)[ER)
    EACH TIME (kETUMA) l: PHESSED. THE VALUES OF b[!] aND Gr!1 as
    FUNCTIONS OF SEKI AND TLKJ (SPECIPIED ABOUE) WLLL, BE COMPUTEN AND
    IMPROVED VALHES S[K+1] AND T[K+1] WILL BE COMPUTED AS THE
    SOLUTION TO NEWTON'S EQUATIONS. WHEN YOU WISH TO TEFWINATE THE
    ITERATION, TYIFE 'gTOP'.
*
        A A[IT B[I] C[I]
        4.100000000E+01 . 10000000E+01 . 1000000002+01
        3 0. O. O.
        8 -30000000F+01 . 44000000E+00 - - R12000%jet01
        1 0. u. 0.
        0 .10000000E+01 -.126400000%+00
    Km 1 S[K]= 0. T[K]= -086196806%+01
    IMPROUED FACTOLI*K**R-6 0.
                                    )*x+( -86(98AR6E+O\)
*
    I ALIJ BCIJ C[LJ
        4 .10000000E+01 . 10000000E+01 .10000000%408
    3 0. 0. 0.
    2 .30000000E+0% .38037736E+00 -. 2K392453E+01
    l 0. 0. 0.
    0 .10000000E+01 -35548594E-02
K= & S[KJ= 0.
IMPROUED FACTOR*X**2-( O. )
*
```

```
    I
            A[I J
                13[1]
                C[IJ
            -119%0010008+4,1
                    0.
            -30!1010000%+01
0.
    10000000%F+(01
K= 3EJju i
MMHOVED FACTOL&ス**2-( 0. )* X+( . 261803402+01)
*
    A ACIT
    B[13
                                    Gil]
            4 . 1000000005+01 - 10000000%t01 - 100000005+01
    O. %. O.
    O. O. N0000005+01
    2 -300000005%+01
    0.10000000%+01
Km 4 SEKJ= 0.
IMLMOURD FACTOEFX**&-{ O.
STOP
    THIS IS THE END OF HKOHLEM 1. SELECT A NEN PROBLIMNO
    YOUR H-FIBLEM SELECTIOY IS (1,8,3, EXTTMANONE)T
NOM/NE
YOU HAUF TWH SHOLCW%
```



```
(R) TYPE MLEESONN पOU WISH TO STIP&
OF THE MATELLHLEYOU WISH TO STYEH.
CONSLLT THE INDEX OF THE STUDENT MANUAL POR THE LIST OF
AVAILABLE SECTION NAMES.
|SLOGOFF
```



```
YOU MAY WOLK av' bMOBLEM SHEGIFIED IN THE STUDENT MANUAL FOK
LESSOK 3. IF GOH GMUE RIFFICYRTY, SOME HELY WILL BE PROVIDED.
THE WMMM,FM: WIH, BF WEGTATEN HERE ACCOKDING TO THE NUMBER YOL
EELrCT.
```



```
|
```



```
SPECIF%
(A) aITKRH'S DHLTA-STHAKED FOKMLLA
(B) f GONUEHGENT ITELATLON FUNCTION G(x)
(C) AN INTERLUAL (A,B) ON whICH ABS(G'(X))<<
```



```
*
```



```
X'[K]=*
```



```
TY&E A conderi FRMREGSDON.
```



```
            NO. THE fancN.
    x'[и]=
```



```
    OK
```



```
    G(X)=
N+(2*x-7nN(X))/s
    DEFIAF,TMF INTEMUAL (A,B)
    Am
    *ASIN(aHy(2%)
    B=
#ASINC.063%:2
```



```
    G"(%)=
#1.4-(shmetecmucximas)/5
```



```
    TYPE A COHALCT ERMMESSLUN.
*1.4-(SEC(%)+:)/5
    ABS(G'(b))>1
    yOU HAVE 4 CHOTCFS
        (1) CON'INHIE TRE FIROBLEM ANYWAY
        (a) GRMINATE THE HHOBLEM
        (3) LEDHETNE G(X)
        (4) HEDNFINE (A,B)
    Youn CHOLCE (1*2,3,4)?
|
    DEFINF THE INTERUAL (APB)
    A=
ASIN(.89125)
    B=
#ASIN(.9492)
```

```
DEFXNE THF, DELIVATIUE
    G*(X)=
1.4~(SEC(%) % \)/5
    CHOOSE A ETALTING VA.IJE
X[0]=
ASEN(.9164)
EACH TLME "OIJ LHFGGG (ILFTHINS. THE SEXT ITERATLON WILL BLA NRINTEIJ.
WHEN YOUI WISH TH BEGIN THE ACCELEHRTLON, TYLE "ALTKEN". AFTER
WHCH AITKFN'G FORMULA WILL BE. AUTOMATYCALLY APYLIED AFTER EVEAY
3RD ITERATION. TO TERMINATE TKE ITERATSON. TYPE 'STOP'.
    K X[K] X'[K]
    0.11500883E+01
*
    1. 11631184E+01
    2 - 11652669E+01
|
    3 - 11655276E+01
*
    4.11655574E+01
AI TKEN
    5 -11655611E+01 - 11655612E+01
    6. .11655612E+01
    7.11655612F+01
    8 - 1.655612E+01 - 11655618E+01
    9.11655612E+01
STOP
DO YOU WLSH TS TRY A DIFFERENT XPOJ?
MYEDOS
K[0]m
\ASIN:.89:3)
```

```
    EfCH TIME YOU HRESS (RETUFN). THF NEXT ITERATION WILR ME FIKNTED.
    WHEN YOU WISH TO BEGIN THE ACCELFHATION, TYPF: 'ALTKEN', AFTER
WHICH AITKEN"S FORMULA WILL. BE AUTOMATICALLY APPLIED AFTEE, EUERY
3RD ITERATION. TO TERMINATE THE ITEMATION, TYPE 'STOP'.
\(K\) K[K] \(K\) © \([K]\)
*
    0 . 1!00%043%+01
    1 :11471354E+01
    2 .116650!8E+01
AI TKCEN
    3 .!1655184E+01 - 11655651E+01
    4.11655651E+01
*
    5 . 11655616E+01
*
    6 .1165561cr+01 .11655612E+01
    7 . 1165561a5+01
STOP
    DO YOU WISH TO TNE A DIFFERENT XLOJ?
NO
    DO YOU WISH TO DEFINF A DIFFERENT G(X)?
NO
    CHOOSE ANOTHER PHOBLDM.
```



```
#
```



```
    ITERATION GND AITKEN'S DHATAMSQUARED HROCESS. vOU WILL HAVE TO
    SPECIFY
            (A) AITKEN'S DEL TA-SUUAKRD FOHMULA
            (A) A CONUERGENT ITELATION FUNCTION G(X)
            (0) GN INTERUNL (A,B) ON WIHCH ABS(G'(X))<1
    WHEN READY, :\JSH (METUHN).
*
    STATE AITKEN'S ACGRMEHATION FOHMM,A
    X'[K]=
*X[K-2]-((XXN[K-1]-X[K-2])!2)/(X[K]-2*X[K-1]+X[K"-8])
    OK
    dEFINE THE ITERATION FUNCTION IN TERMS Of X
    G(X)=
|x+(.7-X+.3*SIN(X))/7
```

```
    DEFINE THE INTERUAL (A,B)
    A=
#.5
    B=
11.!
    DEFIN: THE DERIVATIVF
    (1(X):%
|1+(-1+.3*\operatorname{cos(x))/7}
Chonge n ETARTING UPLUE
X[0]:=
*
*1
```



```
    WHEN YOU WISH TU BEGIN THE ACGR,ERATION, TYPE 'AITKEN'* AFTER
    WHICH AITKEN':S FOLMULA WILL EE AIITGMATICALLY APHLIED AFTER EUERY
    3RD ITERATION. TO TEKMINATE THE ITERATION, TYPE 'STOP".*
        K KiK?
        0 . 1000000005*01
    1 .99320590E4 0
    2.9872R4E3E+00
    3 .98195847E+00
* Al TKEN
    4.97322829E+00
        .94295468E+00
    5.94295468E+00
|
    6. . 9 j293104E+00
*
    7.94291018F+00 .94275375E+00
    8 .94275375E+00
    9.94275375F:00
    10.94875375E+00 .94275375E+00
    11 .94275375E+00
STOP
```

```
DO YOU WLSH TO THY A DIFFEEFNT XCOJ?
NO
DO YOU WISH TO DEFINE A DIFFELIENT G(X)?
YES
DEFENE THE ITEILATION FINCTION IN TERMS OFX
G(X)=
*+(6.7*X+. 3*SIN(X))/20
DEFINE ['HE INTERUAL (A,B)
A=
#-5
B=
1.5
    DEFINE THE DEHIUFTIUE
    G*(X)=z
1+(-1+. 3*(Cos(X))/20
CHOOSE: A STARTING VALIJE
X[0]=
|
EACH TLME YOU PRESS (IETUINS. THE NEXT ITERATRON WLEL. BF JRINTEL.
WHEN YOU WISKL TO BEGIN THE ACCELOHATION, TYHE 'ALIKEN': ATTEA
WHICH AITKEN'G FOLMULA WILLL BE AUTOMATICAHLY APPLIED AFTER EVERY
3RD ITERATION. TO TERMINATE THEL ITERATION, TYPE 'STOP'.
K Y[KKJ X'[K]
*
    0. 10000000F+01
    1.99762866F%00
    2 .99534378F+130
AITREEN
    3.99106903E+N0 .943:4775E+00
    4.94314775F+00
STOP
DO YOU WISH TO TBY A DLFFEBENT XCOI?
*NO YOU WZEIL TO DFFINE A DIFFERENT G(X)?
NO
CHOOSE ANOTIIEH PROBLEEM
YOUR SELECTION IS (1.E.NONE)
NONE
YOU HAVE TWO GHOICFS
(1) TYPE "SLOGOFF" WHICH WILL SI GN YOU OFF THE COMPUTERE
(2) TYPE "SLESSON,---\infty"" WHERE -.--- IS THE SECTION NAME
OF THE MATERIAL. YOU WISH TO STUDY.
CONSULT THE INDEX OF THE STUDENT MANUAL, FOR THE LIST OF
AVAILABLE SECTION NAMES.
```

```
PROBLEM MODE AND INYESTIGFTLON MODE FOR LESSON 18
YOU MAY DEFING YOUIL OWN MATRIK OR HFQURST ONE F&OM THE COMPUTER.
FOR EACH PHOBLFM, YOH MUST
    (1) SPECRFY THE DLMENSION OF THE MATHK (2.3.OR 4%.
    (2) USE GAISSLAN ELIMINATION WITH BIVOTING TO BEDUCE THET
        AUMMOSTED MATRIR TO TRIANGULAK SOPU*
    (3) COMLUTE DETCAT, AND
    (4) USF BACK-SUBSTITUTION TO COMPUTE BWINVERSE OF A.
YOU MOY TYPF "STOP" AT ANY TIME TO TERMINATE A PROBLEM.
YRESS (RETUHNS WHEN READY.
*
    PRORLEM 1.
    SELECT THE SIZE OF MATRIX FOR THIS PROBLEM (2, 3c4% NONE).
N=
$4
    DO YOU WISH TO DEFINE YOUR OWN MATRIX?
|ES
    DEFIMF THE ELEMENTS OF YOUR MATRIX ROW-WISE.
    AC:1* & %=
|
    A[1:23:
-1
    A[1,3]=
O
    A[1,4]=
|
    A[2,1]=
-1
    A[2,2]=
|
```



```
|-1
    A[2, 4]=
O
    A[3,1]=
O
    A[ 3.9]m
-1
    A[3, 3]=
|
```

```
A[3,4]:=
#-1
    A[4,1]m
O
    A[4, 2.]m
O
    A[4,3]=
-1
    A[4, 4]m
|
    THE C-MATRIX IS
        .200'0000000F+01 -. 1000000000E+01 0. u.
        -.1000000000F+01 - 2000000000E+01 - . 100000000004+0& th.
        0. -. 1000000000F+01 - 2000000000F+01 -. 10000000002%+02
        G. 0. - - %0000000000%+01 -2000000000E+01
    AUGMENTED BY THF, DDFN"ITY MATKI_&
    PERFORM GAUSEINN FIIMINATION WITH INTERCHANGE BY SHAEIFYING THE
    OPERATIONS (1) INTERCHANGF (HOW I) WI IH (HOW J)
                        (2) MEFLACE (IUJW J) BY M*(ROW I)+(ROW J)
    AND SUPPLYING THE APPROHRIATE VALUES OF I.S, AND M.
    SPECIFY OPERATION (1.2).
0.
    I*
|
    J*
*2
    M=
*
*-C[2,1]/C[1,1]
    ROW ODRRATION COMPLETE:
    THE CIURLENT C-MATRIX IS
    ROW 1
        .2000000000E+01 -. 1000000000E+02 On O.
        .1000000000E+01 O. O. O.
    ROW e
    0. .1500000000E+01 - . 10000000000E*01 U.
    .5000000000E+00 . 1000000000E+01 0. 0.
    ROW 3
    0. -.1000000000E+01 . 80000000008+01 m.10000000006401
    0.
    RON4
    O. O. -.1000000000E+01 . O.j000006000%L+01
    O. SPECIFY OPERATION (1,2).
|
    In
&
    J=
|
```

```
    M=
*-C[3,2,]cra, 2]
    HOW OLEMOTION COMLLETE
    THF CHMM&NT B-MATMIX IS
    ROW 1
        *20000000000E+01 -.1000000000F+01 0. 0.
        -10000000005F+01 0. 0. %.
    HOW:
    0.
        -15000000000k+02 - - 10000000000t+151 1% 
    ROW 3
    O.
```



```
    now }
    0. 0
    0. U.
    SMEGIFY OPERATLON (1,d).
*2
    I=
*
    J=
4
    M=
*-C[4,3.]/C[3,31
    HOW OPFHATRON COMM.ETG
    THE COMKENT B*METMIX I:
    ROW 1
        -20000000000E+01 \cdots - 10000000000E+01 &. 0.
        -100n000000z+01 0.
        0.
        0.
    ROW a
    O. 50000000000200 ! !500000000E+01 - ! 000000000nE+0! 0.
    -5000000000E+00 - 1000000000E+01 0. 0.
    ROW 3
    0. 0. -1333333333E+01 -. 1000000000%+01
    -33333333335+00 - 1566666C6067E+00 - 1000000000Eta1 (.)
    HOW 4
```



```
    WHITE A NUMBTNL OR FRHHEGSLON FOR DET(A).
    DET(A)*
#C[1,1]*C[2,2]*C[.3,3]*C[4;4]
    LO YOU WANT TO SOLUE FOR THE INVERSE MATRIX B?
MES
```

```
USE BACK-SUBSTITUTLON TO EOLUE FOE THE INUEHSE B IN THF SYSTEM
```



```
    0 C[{,&] C[2,3] [[E,4] X B[2,1] B[2,2] B[2,3] E[2,4]
    O (O C[3,3] C[3,4] B[3,1] B[3,2] B[3,3] B[3,4]
    O () O CP4,4] B[4,1] B[4,2] B[4,3] B[4,4]
```



```
    - c[a*5] c[a,6) c[c*7] c[2o&].
    (:[3,5) C[3,6] C[3,7] C[3,8]
    [[4,5] C[4,6] C[4,7] C[4,8]
    PRES: (GFiTURN) WHEN READY TO GIVE EXPRESSIONS FOR THE E[I.JJ.
|
    B[4*1]*
C[4,4]/C[4,5]
    NO. TRG AgAIN.
    B[4,1]=
C[4.53/CO4,47
    OK* BC4/1i* . 2000000000000E+00
    B[3,1]=
*(c[3.5]-c[3,4]*a[4,1])/C[3,3]
    OK. B[3.1]= .400000000000E+00
    BCR.1J*
*(C[2.5]-C[2.4]*B[401]:*-C[2,3]*D[3.1])/C[2.8)
    OK. B[2.1]m .600000000000E+00
    B[1:1]m
*C[1,5]-C[1,4]=**B[4,1]-C[1,3]*B[3,1]-C(1,8]*B[2,1])/1
CC[.1]
    OK. B[1.1]m . .800000000000% +00
    BC 4, 2ixm
C[4, 6] [C[4,4,4]
    OK. 5[4*dj= .400000000000005+00
    B[3s12]m
*(C[3.6]-C[C 3n4]*B[4,2])/C[ 3.31
    OK. B[3n.2]m .800000000000E+00
    B[2,2]m
(C[2,506]-C[2,4]*B[4,R]-C[8, %]*B[3,2])/C[2,2]
    0K. B[2,2]m •120000000000E+01
    B[1,8]m
*
(CC[1,6]-C[1,4]*B[4,2]-C[1,3]*B[3,2]=/-C[1, 2]*B[8, 81)/C[1, 1]
OK. B[1,2j= ,600000000000E+00
B[4,3]=
*C[4, 7]/C[4,4]
```



```
    G[3:3];
#(C[4, 7]-(%!3,4]*3[4, 3])/C[.3, 3]
```



```
    BRG&!3=
*
```



```
*
```



```
    NO. TEY GGal@.
    BC2, 1]=
```



```
    OK. 11[:%:3]: - N00000000000%+010
    BL1,3]%
#(C[1,7j-1,[1,4]:13[4,3]-C[1,3]*H[3,3]-C[1, 2]*E[2,31)/C[1, 1]
    OK. 14[1.3]m - 400%0010000000%+00
    B[ 4, 4]ᄄ
#C[4.8]/C[4.4]
    OK. ILK 4, 4]a - H000000000000EF+00
    B[ 3,4]:7
*(C[3,8]-NE3,4]*[[4,4])/C[3,:4<#]
    OK. B[3,4]: - fon001000000000k+00
    B[R,4]=
```



```
    B[1,4]=
```



```
#C[1.1]
    OK. I[1, 4]= - &000000000000F+00
```



```
        -10OUOOOOOOEtOL O. 0. O.
        0. -1000000000E-01 0. U.
        O. O. . 10000OODOOENOL U.
        O. 0
    PRODLGM A.
    SELFICD THF SITF OF MATMIX FOR THIS PROBLNEM (2, 3, 4,NONE).
    N=
NNONE
YOU HAUF TW GROICFS
```



```
(!) TYPE "SLESSON. - -m-" WIFFRE - - - - - IS THE SHCTION NAAE OF IHE: MATEIKAL YOU WISH TO STUDY.
CONSULT THE INDEX OF THE STUDENT MANUAL FOR THE LIST OF AVAILABLE SECTION NAMES.
WLOGOFF
```

LESGON 19. UOMDFRG INTEGLATION
PHESS (RETUKN) TO BEGIN.

1. INTHODHCTLON

WI TH THE EMGH GIUEN AS
$E(H)=-(11-n) *(H 12) * F^{\prime \prime}(Z) / 12$ WHETRE $A=X[0]<X[N]=E$.

PRESS (RETHN) UHFN LEADY.
*

OF THF INTEHUAL, GAOHI, VE MAY WHITE FHG THE A\&HROXIMATION T. THE EXPIESSION

ONCE WE ESTADLIMI (I). WF CAN IJSE R*N SUEDIUISIONS IOE HEHLACE
H BY H/E TO OHIAIN YET ANOTHELI AHWUCIXIMATION,
(e) $\left.{ }^{(0)}[1]=1(F(X))+\Omega(H+2) / 4+1\right)(H 14)$.

WE THEN EXTHAPDI.ATE TO OBTAIN THE O(HIA)-APPROXIMATION
(3) T1[1]=(M*TO[1]-TO[OJ)/(M-1)=I(F(X))+0\{H14).

What value of m is NFEIED.

M=

* 4

OK
AL THOUGL CHE DEURAOAMENT OF $\& 1$; IS BOMEWHAT COMPAICRTED THE STUDENT WILL IH WELL TO THMLGHMALY UNDERSTAND THE DEVMLOFWENT IN ORDEH TO GATN A MFFREH INSIGHT INTO IILE CONCEPT OF EXTRAPOLATION. PRESS (KETHIN) TO CONTINUE.
2. BASIC MFFFRWNTATION FOMMMAS

(3) F'U[0]=(F[3]-3*F[2]+3*F[1]-F[O])/(Hi3)+O(H)

WE WHLI. DRHIUE THE FOBMULAS BY SIMHE TAYLOR SERIES. PRESS (heqund whot laEam

EXPANDING ABOUT XCOJ.
$F(X)=F(0]+F \cdot[0] *\left(X-X\{01)+F^{\bullet י}(0] *(x-x[0])+2\right) / 8$

WHERE $X[0]<Z<X L 1]$. EVAL.UATING AT Kmx[1] GIUES
(A) $F[1]=F[O]+F^{\prime}[O] * H+F^{\prime \prime}[O] *(H, 2) / 2+F^{\prime \prime} \subset[O] *(H+3) / 6+O(H+4)$

WHICH DIFFERENTIATION FORMLLA IS DERIUED DIRECTIY FROM (A) ($1,2,3$, NONE)?

```
OK
EVALUATING THE TAYLOL EXPANSILN AT X=RLEJ YIRLDS
```



```
WHICH FOLMPGO 1S DEHIUED IIHECTLY FROM (B).
(1, 2,3aNOME)!
|
            NO. TMG AmALN. DON'T QUESS.
    (1.&.3aNONF)?
UNONE
    OK* WE NEFLL MOLE INTORMATLON.
    SUPPOSE EF, EYALIATE THE TAYLOR EKPANSION AT XEXCOD. WE OBTAIM
    THE IDENTITY
        (C) FCO]=F[O]
    WE CAN OGTAIN DIFFEHENTIATION FOIMULA a BY FORANMO
            (M1*EQUATION (B) + MR*EQUATION(A) + M3*EQUATION(C))/(HPg)
    DEFINE THE NUMERIC VALUES FOR MI, MR* AND M3.
    M|m
|
    OK
    M2m
|-2
    OK
    M3*
|
    OK
    NEXT. WE EUALUATE THE TAKLOL FOLMMLA AT XE 3] TO 08TARN
            (D) F[ 3]wF[9]+F'[0]+(3*H)+F"(03* (y*H: Q)/0
```



```
    WE CAN OBTAIN DIFFERENTIATION FOBMULA 3 BY FOMMING
                (M1*EQ(A)+M2*EQ(B)+M3*EQ(C)+M4*EU(D))/H!3.
    DEFIUE THE NUMERIC UALUES FOR MIOMR,M3. AND MA.
    M1m
|
    OK
    M2=
|-3
    OK
    M3m
|-1
    OK
    M4=
|
    OK
    WE NOW HAVE - 3*EQ(A)+3*EQ(E)-EQ(C)+EQ(D). DIVIDING BY HI3
    GIVES DIFFERENTION FORMLRA 3. THE THHEE DIFFERENTIATION FDRMLLAS
    WILL EE USED IN APPHOXIMATING THE INTEGRAL. FRESS (RETURN).
```

3. GuvaAL Fonmilation of the thapezoiddal kule
hecall that oth obuective ig to betabli sh ihe general thapezoxdal. RU.E

WE PEGIN IM INTEGMATING THE TAYADH FORMLA $F(X)=F\left[(0]+(X-K[0]) * F \cdot[0]+((X-X[0])+2) * F^{-r}[0] / \varepsilon\right.$

THIS GIVES
$I(F(X) ;(X[0], X[1]])=A * F[O]+E * F^{\prime}[O]+C * F^{\prime \prime}[O]+D * F^{\prime \prime}[0]+E * F^{\prime \prime \prime}(W)$ DEFINE: A, B, C, D, AND E IN TERMS OF H.
A=
/H
OK
Bm
4H12/8
0: (5) $\mathrm{Ba}(\mathrm{H}$ (2)/2.
C:
*(H13)/6
© 6
D
"(Hi4)/94
OK:
FOHMING THE INTEGLAL OF THE LAST TEKM, WE NOTE THAT ($(X-X C O J) / 4)$
"JES NOT CHANGE SYGN ON THE INTEHUNL [X[OJ,XCIJI. SO WE MAY

$\mathrm{E}=$
($\mathrm{H}+\mathrm{f}$)/120
OK

WE NOW REPAACE FOROJ RY THE LET DIFFELLENTIATION FORMIMA

$+(\mathrm{H}, 3) * \mathrm{~F}^{\prime \prime}\left[\mathrm{OJ} / 6+(\mathrm{H}+4) * \mathrm{~F}^{\prime \prime}\left[\mathrm{CO} / 24+0\left(\mathrm{H}_{4}+5\right)\right.\right.$
$m(H / 2) *(F[0]+F[1])-(H 13) * F^{\prime \prime}[O] / 12-(H ; 4) * F^{\prime \prime}[0] / 24+O(H 15)$
PRESS (RETURN).
*

 I（F（X）：［K［0］，K［1］］）：

（B）（H／P）＊（F［（1］＋FR［1］）－（H／1：$) *(F[\&]-2 * F[1]+F[0])$ $+(114) * F^{\prime \prime} \cdot[0] / 24+0(119!)$
（c）$(H / 8) *(F[0]+F[1])-(1 / 24) k(F[2]-2 * F[1]+F[0])$

 ＊B
$0: 1$
REPLACE FOCOJ IN（B）MY DLEFERENTIATION POLMIRA（S） F＇O［O］＝（F［3］－3＊F［E］＋3＊F［1］－F［O］）／（HP3）＋G（R）if OBTAIN I（F（X）s［x［0］，X［1］3）＝
（A）$(H / 2) *(F[0]+F[1])-(1 / 12) *(F[\{1-2 * F L 17+F L 4])$
$-(H / 12) *(F[3]-34 F[2]+3 * F[1]-F[01)+0(645)$
（B）$(H / Q) *(F[O]+F[1])-(H /[2) *(F[8] \sim 2 * F[1]+F[0: 3$
$-([1 / 24) *(F[32-3 * F[2]+34 F[1]-F[01)+0(H E 5)$
（C）$(H / 2) *(F[0]+F[1],-\hat{r} / 12) *(F[2]-2 * F[1]+F[01)$
$+(\mathrm{H} / 24) *(\mathrm{~F}[3]-3 * \mathrm{~F}[2]+3 * \mathrm{~F}[\mathrm{C} 1]-\mathrm{F}[\mathrm{O}])+\mathrm{O}(\mathrm{H}+5)$
CORRECT ANSWER IS（A，EBCONONE）？
－C
OK
FOi THE：GENEMAL INTKHVAL，WE HAVE
I（F（X）：［X［x］．X［1＋1才）
$*(H / O) *(F[I)+F C I+1])=(H / 12) *(F C L+\&]-2 * F[1+1]+F[1])$
$+(H / 84) *(F[I+31-3 * F L I+2)+3 * F[I+1]-F C I])+O(H 15)$
AND［ $(F(X):[A, B])=1(F(X) ;[X[0,1, X[N]])=$
$(H / 2) * \operatorname{SUM}(F[I]+F[I+1])-(11 / 12) * S U M(F[1+21-2 * F[1+1]+F[1])$
$+(H / 24) * \operatorname{SUM}(F[[+3]-3 * F[1+2]+3 * F r:+1 J-F[1])+5(M(0: H+5))$

WE RECOGNL\％E SUM（F［I］＋F［I＋IJ）AS THE TRAPEZOIDAL．ARPBOXIMATION
$\mathrm{F}[1]+2 *(\mathrm{Fr}[\mathrm{a}]+\ldots+\mathrm{F}[\mathrm{N}-1])+\mathrm{Fr} \mathrm{N}]$ ．
ALSO，THE LAST STMM，

\＃HT4
OK
IN TEHM：OF THE FCIJ bOM TKE APPROFHLATE VALUE：OF I．WKITE AS A
FOUR TBLM ERMURESION
$\operatorname{SUM}(F[\{+4]-\{6 * F[I+1]+F(I])=3$

OK．$\quad \operatorname{SUM}(F[I+2]-2 * F(X+1]+F(X])=F[0]-F[1]+F[N+1]-F[N]$ ．
USING SIK TEIAMS．
SUM（F［ $1+3]-3 * F[I+2]+3 * F[I+1]-F[1])=$
－F［N＋2］＋N－2＊F［N＋1］＋F［N］－F［2］＋2＊F［2＊2＊1］－F［O］
OK

```
WE NOW HAVE I(F(x):[A,B])=
(F[0]+2*(F[1]+\ldots...FF(N-1])+F[N])-(H/18)*(F[0]-F[{]+F[N+1]-F[N])
                    +(4/24)*(F[N+2]-2*F[N+1]+F[N]-F[2]+2*F(1]-F[O])+0{H(4).
USING DIFFERENTIATION FORMULAS l AND & OF SECTION 2,
    F[O]-F[1]=-H*F'[O]-(H+2)*F'C[0]/2+O(H:3)
    F[N+1]=F[N]=H*F'[N]+(H+2)*F*CN]/2+O(H!3)
    F[2]-2*F[1]+F[O]=(H,2)*F'"[O]+(H, 3)*F"'[0]+0(H,4)
    F[N+2]=2*F[N+1]+F[N]=(%&!2)*F'[N]+(H!3)*F'0'[N]+O(4, 4)
MAKING THESE SUBSTITUTIONS AND COLLECTING TERMS,
I(F(X);[A,B])=
    (A) :H/E)*SUM(F[II]+F[I+1J)+O(H:4)
    (B) (H/Z)*SUM(F[I]+F[I+1])-(F, 2)*(F'[N]-F[[0])/12+0(HI4)
    (C) (H/2)*SIM(F[I]+F[I+1])-(H;2)*SF\cdot[N]-F'[O])/12
                                    +(H!3)*(F'[N]-F"(O)
CORRECT ANSWER IS (A,B,C)?
*
A
    SINCE THE TRAPEZOIDAL RULE IS AN O(HIR)-APPROXIMATION TO THE
    INTEGRAL, WE KNOW (A) IS WRONG. SEE LESSON 18.
CORRE:T ANSWER IS (A, B,C)?
B
OK
THIS ESTABLISHES THE BASIC FORMULA FOR THE TRAPEZOIDAL RULE.
```


WHERE THE COMPUTATLON IS TU[O]mF[OJ+2*(F[I]+...+F[N-1])+F(Nג.
SINCE X[OJ=A AND X[N]=B REGARDLESS OF THE NUMBER OF SUBDIUISIONS
N, WE HAVE F'[N]-F'[O]=C IS CONSTANT.
PRFSS (RETURN WHEN READY.
4. ROMBERG INTEGRATION -- SIMFLE EXTRAPOLATION
WE HAVE POR N SUBDIUISIONS OF THE INTERVAL [AOB],
(A) TOLOT=I $+\mathrm{C} *(\mathrm{H} / \mathrm{C})+\mathrm{O}(\mathrm{H}+4)$
AND FOR $2 * N$ SUBDIUISIONS, (I.E. REPLACE H BY H/\&).
(B) $\mathrm{TOCL} \mathrm{H}=\mathrm{I}+\mathrm{C} *(\mathrm{H}+\mathrm{C}) / 4+\mathrm{O}(\mathrm{H}, 4)$
IN TERMS OF TO[O] AND TO[1], WHITE AN O(HY4) APPHOXIMATION TO 1
TI[. $]=1+0(H 14)=$
*4*Tvcoj-TO[1]
TRY AGAIN OK TYPE HEDP.
Tictjelto(1it 4) =
*(4*TO[1]-TE\#O[0J)/3
OK
EXAMPLE 4Ã SUPPOSE WE WISH T) APPROXIMATE I(1/X3[1, RJ).
FOR Ha, 5, WE HAVE $(X[0], F[0])=(1,1),(X[i], F[1])=(1,5,2 / 3)$, AND

".25*(1+4/3+.5)

OK
TO[0] $=.708333333333329 \mathrm{E}+00$
IN OHDER TO FORM TICOJ, WE USE 4 SUBDI YISIONS WITH H REPLACED BY (H/2)=.85. THIS YIELDS THE NUMERIC VALISS

X[0]=

11
OK
X[3]=
*2/3
thy Again.
$\mathrm{X}[3]=$
\#1.5
$x[3]=1 \cdot 75$
F[i]=
*. 8
OK
WRITE THE O(HT 2$)=$ THAPEZOLDAL. HLLE
TO[1]=

OK
TOC13= -697083809523799E+00
USE SHMALE EKTRAPOLATION AND WRITE THE O(H:4)-APPROXIMATION.
T1C1. $=$
(4 ** 697023809523799 m . 708333333333329)/3
OK
TI[1] = .693253968253956E+00
5. homberg integhation - hebpated extrapolation

WITH A BITLLE TIME AND EFFORT, WE COULD HAVE CAMAIED MORE TERMS IN OUR TAYLOA ERPANSION TO CBTAIN

IN TEIMS OF Cl AND C2,
DI:
\#Cl/4
D2x
\#C2/16
OK

IN TERMS OF Cl AND CZ.
E! $=$
C1/16
OK
E2m
*C2/54." $64 * * 256$
O:S
(C) $\operatorname{TO[R]=I+CI*(H12)/16+CQ*(H14)/856+O(H15)~}$

WE NOW USE SIMPLE EXTRAPOLATION ON (A) AND (B) TO OBTAIN THE
$O(H 14)$-APPFOXIMATION TI[1]=(4*TO[1]-TOCOJ)/3=1+FI*(Hi4)+O(H; B)
F!:

- $-\mathrm{CB} / 4$
*-3*C2/4

```
    THY AGAIN.
    Fl=
#-C2/4
    OK
    USE SLMPLE EXTRAPOLATION (B) AND (C) TO OBTAIN ANOTHER
    O(H:A)-AIMROXIMATION TL[2]=(4*TO[2]-IO[1])/3=1+F2*(H:4)+O(H:6).
    FC=
-C2/64
    WE NOW HAUE, THF, TWO O(H:4)-APPHOKLMATLONS
        (D) T1C1J:I-(H:4)*C2/4+O(HT6)
        (E) TI[E]=I-(H,4)*C2/64+O(H, 6)
    BY SIMPRF EXTRAPOLATION ON (D) AND (E). WE HAUE FOR THE PROPER M,
        (F) T2[C]=(M*T1[C2]-T1[1])/(M-1) =1+O(HP6)
    M=
16
OK
EXAMPLE 5A. IN FKAMPLE 4A, WE WANTED TO APPROXIMATE
```



```
    TO[0]a= - 708333333333349F+00
    TO[1]= .651023809529302E+00 [1[1J% . 693253968253952E+00
    FOR 4*N, H/4, CNLOULNTE
    TO[0]n
-0425*(1+2*(1/1.105+1/1.25+1/1.375+1/1.5+1/1.625+1/1.75+1
(1/1.8'75)+.5)
    OK
    TO[2]= -694181850371840E+00
    PERFORM THE EXTXAPOLATIONS
    NOTE TIIAT TIEIJ WAS COMPUTED IN EXAMHLE 4A.
    T1[8]*
*(4*TO[a]-T0[1])/S
    OK
    T1[2]% -693154530654514E+00
    T2[2]m
*(16*T1[c]-T1[1])/15
    OK
    T2[2]= -693147901481215E+00
    6. HOMBERG INTEGRATION - EXTRAPOLATION TO THEELIMIT
    FORM THE FOLLOWING TABLE OF UALUES
        TO[0]
        TO[1] T1[1]
        TO[e] TH[a] re[a]
            TO[k] T&[K] TE[K] * . . TK<K.
    WHERE, TOLIJ IS THE TRAPEZOIDAL APP&OKIMATION WITH (I+1)WN
    SUBOIVISIONG ANL SPACING H/GEII), TICIJ AKE IST EXTRAPOLATIONS
    WITH MULTIHLIERS M=A, TE[IJ ARE END EXTHALOLATIONS WITH Mm4IR, AND
    TJ[IJ ARE JTH EXTHAPOLATIONG UGING M=4TJ. PRESS (EETURN).
#
    THIS IS THE END OF LESSON 19.
    DO YOU WISH TO BEGIN THE PROEREM MODE?
#YES
```

```
PROBLEM MODF FOR L.ESSOY 19
FOR EAGH DHOBLEM, YOU MUST DEFLNF, THE TKAPEZOIDAL FORMULAS FOR THE
SPECIFIED VALUFG OF N AND THE FOLMOLAS FOR EXTKAPOLATION TO THE
LIMIT. YOU MAY TERMINATE A rINGLEM GUXTIME BY TY&ING 'STOP'.
YOUR FROBLEM SELFCTION IS (1,R,NO.NE)?
|
PROBLEM 2. WE WISH TO USE GOMBERG INTEGKATION TO APPROXIMATE
I(LN(X);[1,3]: USING N=1,2,4, AND 8.
    I X[I] F[I]
    0 1.00 0.
        1 1.85 .223143551314203E+00
        2 1.50 . 4054655108108153E+00
        31.75 -55061578%9354105+00
        42.00 -693147180559989E+00
        5 2.25 -410930216216310E+00
        62.50 -. 316290731374131E+00
        7 2.75 -1011600911678455+01
        83.00 . 1098612288666808E+01
    WRITE: THE, ERIHESGIONS FOR THE TRAPEZOIDAL, RULES USING THE TABLE.
    FOR Na1, TO[0]=
#F[&]+F[C]
    OK. TOCOD= . 10086,2ez8% 66808E+0i
    FOR Nag, TO[1]*
* 5*(2*F[4]+F[8])
    OK. TO[1]% -184&45332489397E+01
    FOR N=4, TO[:]=
*.25*(C*(FRCA]+F[4]+F[G])+F(8.1)
    OK. TO[2]= .l2se10458243812%+01
    FOR Mm8, TO[3]=
*
    OK. TO[3]= . 129237400800514E+01
    DEFINE THF, (1(H;A)-APPROXIMATIONS
    T1[1]=
*(4*TO[1]-T0[0])/3
    OK. T1[1]:* - :29040033696986E+01
    T1[2]m
*(4*T0[2]-T0[1]*/3
    OK. T1L8J:= . 1e9532166828617E+01
    T163\a
*(4*T0[3]-T0(2.)/3
    OK. T1E32= . 129579834986081E+01
    DEFRNE THE O(HIG)-APYNOXIMATIONS.
    T2[4]:
*(16*T1[2]-T1[1])/15
    OK. T2[2]= . 129564975704062E+01
    T2[3]=
*(16*T1[3)-T1[2])/15
```

```
OK•TON3T= - 129533012863245F+01
DFFINE THE O(HT&)~AWDROCIMNTION.
T3[3]=
*(64*TR[3]-1%64])/6:3
OK• T3[3]: - 139533450167354E+01
    THE KOMMSTG: EKTMAMOL,ATION TARLFE IS
```



```
Hz - 10000000000000008+01
        -1242152364843475%+01 - 1890400336963865+01
    H* -5000f000000000000%%00
        -128C1045HA43412F+01 - 129532166828617E+01 - 129564975704062E+01
H= - 2500000000000000%+00
        - 129237490400514B+01 - 129579834986081E+01
                            -129583012863245E+01
        104583609167358F+01
    SELECT NNOTHFR IWOMM, BM.
    YOUR FROHI,FM SFLECTIOS I S (1, B,NONE)?
*
    PHOBL.EM 1. WE WISH TO USE HOMEIEKG INTEGRATION TO APPROXIMATE
    I(SIN(X)/X;[0,1]) USING Nal, 2, AND 4 SUBDIUISIONS. (NOTE, AT Xm0.
    SIN(X)/X=1 SINCE THIS UALUE AGREES WITH THE LIMITO)
    1 K[1]
                F[I]
        0 0.00 . 1000000000000000E$01
        - .2t . 989615837013093E+60
        2.60 .9588551077808401E+00
        3 -15 .208851680031113E+00
        41.0) .1541470984807891E+00
    WRITE THE RXPIESSIONS FGH the thatezOIDAL RILES USING THE table.
    FOR Nmi, TO[0]=
*-5*(F[0]+F[4])
    OK. TOCOJ= -93073549240034465+00
    FOI& Nm2. TOC1]=
*-25*(F[0]+2*F[855%(4))#####**F[4])
    OK. 'Ol'1J= .939793e84806171E+00
    FOR NEAS GOL aJ=
* - 125+(FCO]+2*(F[1]+F[2]+F[3])+F[4])
    OK. TO[SJx - 944513521665385F+00
    DEFINE THF O(H;4)-AHHROXIMATIONS
    T1[1]=
*(4*Tu[1]-T0[0])/3
    OK.T1[1]m - J4R145882273576E+00
    T1[&]=
*(4*T()[P]-TO[1])/3
    OK. T\[G]= .946086933951790E+OO
    DEFINE THE O(H,G)-APPHC&IMATIONS.
    TC(2)=
*
*(16*Ti[2]-T1(1])/15
```

OK. TEREJ= . $246084004063670 \mathrm{E}+00$
THE HOMBREG WGTLAPMLATON TABLE IS

-92073549:4403946F+00
$\mathrm{H}=\quad-50(1) 101000000000 \mathrm{~F}+100$

$\mathrm{Ha} \quad . \mathrm{ESOD} 00000000000 \mathrm{r}+00$
$.9445135 \% 1665385 \mathrm{E}+00$. $946086933451790 \mathrm{E}+00$
$.946043004063670 E+00$
SELECT ANOT:KHR PHOBLEM.

"NONF:
YOU HAUE (TW) CAIICES
(1) TY\&E "SLOGOEF" WHICH WILL SIGN YOU OFF THE COMPIJTEK•
 OF THE MATEKIAL YOU WISH TO STUDY•

CONSULT THE index of the student manual for the list of AVAILABLE SECTION NAMES.

[^0]: * In identity (10), "abs" was added.

